Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004845

RESUMO

In micron or nano smart sensing systems, piezoelectric cantilever beams are distributed as major components in microsensors, actuators, and energy harvesters. This paper investigates the performance of four cantilever beam devices with "electric-force" conversion based on the inverse piezoelectric effect of lithium niobate (LiNbO3, LN) single-crystal materials. A new compact piezoelectric smart device model is proposed, designed as a single mass block connected by four beams, where devices exhibit smaller lateral errors (0.39-0.41%). The relationship between the displacement characteristics of cantilever beams and driving voltage was researched by applying excitation signals. The results show that the device has the maximum displacement at a first-order intrinsic frequency (fosc = 11.338 kHz), while the displacement shows a good linear relationship (R2 = 0.998) with driving voltage. The square wave signals of the same amplitude have greater "electrical-force" conversion efficiency. The output displacement can reach 12 nm, which is much higher than the output displacement with sinusoidal excitation. In addition, the relative displacement deviation of devices can be maintained within ±1% under multiple cycles of electrical signal loading. The small size, high reliability, and ultra-stability of Si-LN ferroelectric single-crystal cantilever beam devices with lower vibration amplitudes are promising for nanopositioning techniques in microscopy, diagnostics, and high-precision manufacturing applications.

2.
Biomimetics (Basel) ; 7(4)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36278724

RESUMO

Soft grippers have attracted great interest in the soft robotics research field. Due to their lack of deformability and control over compliance, it can be challenging for them to pick up objects that are too large or too small in size. In particular, compliant objects are vulnerable to the large grasping force. Therefore, it is crucial to be able to adjust the stiffness of the gripper materials. In this study, a soft gripper consisting of three artificial fingers is reported on. Each of the artificial fingers is made of a tri-layer polymer structure. An exterior layer, made of an ecoflex-graphene composite is embedded with electric wires as a heating source, by applying direct-current potential. The Joule heat not only allows for deformation of the exterior layer, but also transfers heat to the middle layer of the thermoplastic polyurethane (TPU) elastomer. As a result, the stiffness of the TPU layer can be adjusted using electro-thermal heating. Meanwhile, the third layer consists of a polydimethylsiloxane replica as a supporting layer with a gecko-inspired dry adhesive structure. By applying voltage through electric wires, the artificial fingers can bend and, thus, the soft gripper can hold the objects, with the help of the dry adhesive layer. Finally, objects like a shuttlecock, tennis ball and a glass beaker, can be picked up by the soft gripper. This research may provide an insight for the design and fabrication of soft robotic manipulators.

3.
Nanomaterials (Basel) ; 12(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35745447

RESUMO

The seeking of resonator with high Q and low insertion loss is attractive for critical sensing scenes based on the surface acoustic wave (SAW). In this work, 128° YX LiNbO3-based SAW resonators were utilized to optimize the output performance through IDT structure parameters. Once the pairs of IDTs, the acoustic aperture, the reflecting grid logarithm, and the gap between IDT and reflector are changed, a better resonance frequency of 224.85 MHz and a high Q of 1364.5 were obtained. All the results demonstrate the structure parameters design is helpful for the performance enhancement with regard to SAW resonators, especially for designing and fabricating high-Q devices.

4.
Micromachines (Basel) ; 13(2)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208452

RESUMO

It is a great challenge to detect in-situ high-frequency vibration signals for extreme environment applications. A highly sensitive and robust vibration sensor is desired. Among the many piezoelectric materials, single-crystal lithium niobate (LiNbO3) could be a good candidate to meet the demand. In this work, a novel type of micro-electro-mechanical system (MEMS) vibration sensor based on a single crystalline LiNbO3 thin film is demonstrated. Firstly, the four-cantilever-beam MEMS vibration sensor was designed and optimized with the parametric method. The structural dependence on the intrinsic frequency and maximum stress was obtained. Then, the vibration sensor was fabricated using standard MEMS processes. The practical intrinsic frequency of the as-presented vibration sensor was 5.175 kHz, which was close to the calculated and simulated frequency. The dynamic performance of the vibration sensor was tested on a vibration platform after the packaging of the printed circuit board. The effect of acceleration was investigated, and it was observed that the output charge was proportional to the amplitude of the acceleration. As the loading acceleration amplitude is 10 g and the frequency is in the range of 20 to 2400 Hz, the output charge amplitude basically remains stable for the frequency range from 100 Hz to 1400 Hz, but there is a dramatic decrease around 1400 to 2200 Hz, and then it increases significantly. This should be attributed to the significant variation of the damping coefficient near 1800 Hz. Meanwhile, the effect of the temperature on the output was studied. The results show the nearly linear dependence of the output charge on the temperature. The presented MEMS vibration sensors were endowed with a high output performance, linear dependence and stable sensitivity, and could find potential applications for the detection of wide-band high-frequency vibration.

5.
Nanomaterials (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615914

RESUMO

The demand for flexible pressure sensors in wearable devices is dramatically increasing. However, challenges still exist in making flexible pressure sensors, including complex or costly fabrication processes and difficulty in mass production. In this paper, a new method is proposed for preparing the flexible pressure sensors that combines an imprinting technique with blade-coating of a graphene-silver nanosheet-polymer nanocomposite. The piezo-resistive type flexible pressure sensor consists of interdigital electrodes and nanocomposite as a sensing layer, as well as a micropillar array structure. The morphology of the sensitive layer of the sensor is characterized by scanning electron microscopy (SEM). The response performance, sensitivity, and stability of the sensor are investigated. The test results show that the initial resistance of the pressure sensor is only 1.6 Ω, the sensitivity is 0.04 kPa-1, and the response time is about 286 ms. In addition, a highly hydrophobic wetting property can be observed on the functional structure surface of the sensor. The contact angle is 137.2 degrees, revealing the self-cleaning property of the sensor. Finally, the prepared sensor is demonstrated as a wearable device, indicating promising potential in practical applications.

6.
Micromachines (Basel) ; 9(3)2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424058

RESUMO

Polymer microstructures are widely used in optics, flexible electronics, and so forth. We demonstrate a cost-effective bottom-up manner for patterning polymer microstructures by evaporative self-assembly under a flexible geometric confinement at a high temperature. Two-parallel-plates confinement would become curve-to-flat shape geometric confinement as the polydimethylsiloxane (PDMS) cover plate deformed during solvent swelling. We found that a flexible cover plate would be favorable for the formation of gradient microstructures, with various periodicities and widths obtained at varied heights of clearance. After thermal annealing, the edge of the PMMA (Poly-methylmethacrylate) microstructures would become smooth, while the RR-P3HT (regioregular-poly(3-hexylthiophene)) might generate nanocrystals. The morphologies of RR-P3HT structures included thick films, straight lines, hierarchical stripes, incomplete stripes, and regular dots. Finally, a simple field-effect transistor (FET) device was demonstrated with the RR-P3HT micropattern as an active layer.

7.
Artigo em Inglês | MEDLINE | ID: mdl-27143987

RESUMO

This study aimed to determine the effect of topically applied Laminaria polysaccharide (LP) on skin aging. We applied ointment containing LP (10, 25, and 50 µg/g) or vitamin E (10 µg/g) to the dorsal skin of aging mice for 12 months and young control mice for 4 weeks. Electron microscopy analysis of skin samples revealed that LP increased dermal thickness and skin collagen content. Tissue inhibitor of metalloprotease- (TIMP-) 1 expression was upregulated while that of matrix metalloproteinase- (MMP-) 1 was downregulated in skin tissue of LP-treated as compared to untreated aging mice. Additionally, phosphorylation of c-Jun N-terminal kinase (JNK) and p38 was higher in aging skin than in young skin, while LP treatment suppressed phospho-JNK expression. LP application also enhanced the expression of antioxidative enzymes in skin tissue, causing a decrease in malondialdehyde levels and increases in superoxide dismutase, catalase, and glutathione peroxidase levels relative to those in untreated aging mice. These results indicate that LP inhibits MMP-1 expression by preventing oxidative stress and JNK phosphorylation, thereby delaying skin collagen breakdown during aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...