Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(14): 21267-21278, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38386157

RESUMO

High-temperature solid adsorbent Li4SiO4 has received broad attention due to its high theoretical adsorption capacity, high regeneration capacity, and wide range of raw materials for preparation. In this paper, a Li4SiO4 adsorbent was prepared by MCM-48 as the silica precursor and modified by doping with metal ions (Ca2+ and Na+) for high-temperature capture of low-concentration CO2. The results showed that the surface of the Ca-doped (or Na-doped) Li4SiO4 adsorbent developed some particles that are primarily composed by Li2CaSiO4 (or Li3NaSiO4). Furthermore, the grains of the adsorbents became finer, effectively increasing the specific surface area and enhancing adsorption performance. Under 15 vol% CO2, the maximum CO2 adsorption was 25.63 wt% and 32.86 wt% when the Ca2+ doping amount was 0.06 and the Na+ doping amount was 0.12, respectively. These values were both higher than the adsorption capacity before the metal ion doping. After 10 adsorption/desorption cycles, the adsorption capacity of Na-doped Li4SiO4 increased by 9.68 wt%, while that of Ca-doped Li4SiO4 decreased by 7.98 wt%. This difference could be attributed to the easy sintering of the Ca-containing adsorbent. Furthermore, a biexponential model was used to fit the CO2 adsorption curve of the adsorbent in order to study the adsorption kinetics. Compared to the conventional Li4SiO4, the Ca/Na-doped adsorbent offers several advantages, such as a high CO2 adsorption capacity and stable cycling ability.


Assuntos
Dióxido de Carbono , Lítio , Temperatura , Adsorção , Sódio , Íons
2.
Commun Biol ; 7(1): 189, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366110

RESUMO

While genome-wide studies have identified genomic loci in hosts associated with life-threatening Covid-19 (critical Covid-19), the challenge of resolving these loci hinders further identification of clinically actionable targets and drugs. Building upon our previous success, we here present a priority index solution designed to address this challenge, generating the target and drug resource that consists of two indexes: the target index and the drug index. The primary purpose of the target index is to identify clinically actionable targets by prioritising genes associated with Covid-19. We illustrate the validity of the target index by demonstrating its ability to identify pre-existing Covid-19 phase-III drug targets, with the majority of these targets being found at the leading prioritisation (leading targets). These leading targets have their evolutionary origins in Amniota ('four-leg vertebrates') and are predominantly involved in cytokine-cytokine receptor interactions and JAK-STAT signaling. The drug index highlights opportunities for repurposing clinically approved JAK-STAT inhibitors, either individually or in combination. This proposed strategic focus on the JAK-STAT pathway is supported by the active pursuit of therapeutic agents targeting this pathway in ongoing phase-II/III clinical trials for Covid-19.


Assuntos
COVID-19 , Animais , Janus Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição STAT/genética , Citocinas/metabolismo
3.
Nat Commun ; 15(1): 328, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184609

RESUMO

Membrane-camouflaged nanomedicines often suffer from reduced efficacy caused by membrane protein disintegration and spatial disorder caused by separation and reassembly of membrane fragments during the coating process. Here we show that intracellularly gelated macrophages (GMs) preserve cell membrane structures, including protein content, integration and fluidity, as well as the membrane lipid order. Consequently, in our testing GMs act as cellular sponges to efficiently neutralize various inflammatory cytokines via receptor-ligand interactions, and serve as immune cell-like carriers to selectively bind inflammatory cells in culture medium, even under a flow condition. In a rat model of collagen-induced arthritis, GMs alleviate the joint injury, and suppress the overall arthritis severity. Upon intravenous injection, GMs efficiently accumulate in the inflammatory lungs of acute pneumonia mice for anti-inflammatory therapy. Conveniently, GMs are amenable to lyophilization and can be stored at ambient temperatures for at least 1 month without loss of integrity and bio-activity. This intracellular gelation technology provides a universal platform for targeted inflammation neutralization treatment.


Assuntos
Artrite Experimental , Ratos , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Meios de Cultura , Citocinas , Liofilização , Macrófagos
4.
ACS Appl Mater Interfaces ; 15(24): 29012-29022, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37291057

RESUMO

A cell-based drug delivery system has emerged as a promising drug delivery platform. Due to their innate inflammatory tropism, natural and engineered macrophages have exhibited targeted accumulation in inflammatory tissues, which has allowed targeted delivery of medicine for the treatment of a variety of inflammatory diseases. Nevertheless, live macrophages may take up the medicine and metabolize it during preparation, storage, and in vivo delivery, sometimes causing unsatisfactory therapeutic efficacy. In addition, live macrophage-based drug delivery systems are usually freshly prepared and injected, due to the poor stability that does not allow storage. "Off-the-shelf" products would be indeed conducive to the timely therapy of acute diseases. Herein, a cryo-shocked macrophage-based drug delivery system was developed via supramolecular conjugation of cyclodextrin (CD)-modified "zombie" macrophages and adamantane (ADA)-functionalized nanomedicine. "Zombie" macrophages exhibited a much better storage stability over time than their counterpart live macrophage drug carriers and maintained cell morphology, membrane integrity, and biological functions. In an acute pneumonia mouse model, "zombie" macrophages carried quercetin-loaded nanomedicine, hand-in-hand, to the inflammatory lung tissues and effectively alleviated the inflammation in mice.


Assuntos
Ciclodextrinas , Pneumonia , Animais , Camundongos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/farmacologia , Macrófagos , Ciclodextrinas/farmacologia
5.
Environ Res ; 233: 116445, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37356523

RESUMO

The catering industry's growth has resulted in cooking fume pollution becoming a major concern in people's lives. As a result, its removal has become a core research focus. Natural loofah is an ideal biofilm carrier, providing a conducive environment for microorganisms to grow. This study utilized natural loofah to fill domesticated activated sludge in a bioscrubber, forming biofilms that enhance the ability to purify cooking fume. This study found that the biomass of loofah biofilms per gram is 104.56 mg. The research also determined the removal efficiencies for oils, Non-methane total hydrocarbons (NMHC), PM2.5, and PM10 from cooking fumes, which were 91.53%, 67.53%, 75.25%, and 82.23%, respectively. The maximum elimination capacity for cooking fumes was found to be 20.7 g/(m3·h). Additionally, the study determined the kinetic parameters for the biodegradation of oils (Kc and Vmax) to be 4.69 mg L-1 and 0.026 h-1, respectively, while the enzyme activities of lipase and catalase stabilized at 75.50 U/mgprots and 67.95 U/mgprots. The microbial consortium identified in the biofilms belonged to the phylum Proteobacteria and consisted mainly of Sphingomonas, Mycobacterium, and Lactobacillus, among others.


Assuntos
Luffa , Esgotos , Humanos , Óleos , Hidrocarbonetos , Gases , Culinária
6.
ACS Appl Bio Mater ; 6(9): 3463-3471, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37161309

RESUMO

UV exposure often triggers photoaging of the skin. Pharmacological treatment suffers from severe side effects as well as poor efficacy because of insufficient skin penetration. Dissolved oxygen has been previously shown to reverse photoaged skin; however, the treatment is often limited by the availability of equipment (e.g., high-pressure oxygen). Poor oxygen diffusion into the skin has also limited its therapeutic efficacy. Herein, we developed a microneedle patch to deliver living microalgae to the deeper layers of the skin for efficient oxygenation and reversal of photoaging. The continuous release of oxygen from microalgae in the skin through photosynthesis reversed the inflammatory microenvironment and reduced reactive oxygen species levels in the photodamaged skin, leading to collagen regeneration and reduced wrinkles. This study provides not only a means for highly efficient skin oxygenation and reversal of photoaging but also an important theoretical basis for the clinical treatment of photoaging.


Assuntos
Microalgas , Envelhecimento da Pele , Raios Ultravioleta/efeitos adversos , Oxigênio/farmacologia , Pele
7.
Carbohydr Polym ; 296: 119968, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088007

RESUMO

Psoriasis seriously harms physical and mental health of patients. Hyaluronic acid (HA)-based topical formulation can increase drug concentration in psoriatic skin via CD44-assisted targeting. Herein, we developed a supramolecular medicine composed of curcumin-loaded HA-cucurbit[7]uril (HA-CB[7]@Cur), which could efficiently sequester polyamines (PAs) via host-guest interactions of CB[7] and PAs to suppress RNA-PAs immunocomplex formation. Meanwhile, anti-psoriasis drug Cur could be released from HA-CB[7]@Cur by PAs. With phenotypical disease evaluation, psoriasis area measurements and severity index scoring, and histological characterizations, we demonstrate topical administration of Carbopol gel formulation of HA-CB[7]@Cur on psoriasis-like skin in mice exhibited an enhanced anti-psoriasis activity, in comparison with gel of free Cur or HA-CB[7]. Cytokine expression analysis in psoriatic skin also supported the observed therapeutic outcomes. We provide a novel and effective supramolecular strategy to realize cooperative anti-psoriasis via controlled release of curcumin and PAs sequestration, which can be potentially expanded to treat other PA-involved skin inflammatory diseases.


Assuntos
Curcumina , Psoríase , Animais , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Ácido Hialurônico/uso terapêutico , Camundongos , Poliaminas , Psoríase/tratamento farmacológico , Psoríase/patologia
8.
J Control Release ; 350: 777-786, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995300

RESUMO

Acute pneumonia is an inflammatory syndrome often associated with severe multi-organ dysfunction and high mortality. The therapeutic efficacy of current anti-inflammatory medicines is greatly limited due to the short systemic circulation and poor specificity in the lungs. New drug delivery systems (DDS) are urgently needed to efficiently transport anti-inflammatory drugs to the lungs. Here, we report an inflammation-responsive supramolecular erythrocytes-hitchhiking DDS to extend systemic circulation of the nanomedicine via hitchhiking red blood cells (RBCs) and specifically "drop off" the payloads in the inflammatory lungs. ß-cyclodextrin (ß-CD) modified RBCs and ferrocene (Fc) modified liposomes (NP) were prepared and co-incubated to attach NP to RBCs via ß-CD/Fc host-guest interactions. RBCs extended the systemic circulation of the attached NP, meanwhile, the NP may get detached from RBCs due to the high ROS level in the inflammatory lungs. In acute pneumonia mice, this strategy delivered curcumin specifically to the lungs and effectively alleviated the inflammatory syndrome.


Assuntos
Curcumina , Pneumonia , beta-Ciclodextrinas , Animais , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Eritrócitos , Compostos Ferrosos , Lipossomos , Metalocenos/farmacologia , Camundongos , Pneumonia/tratamento farmacológico , Espécies Reativas de Oxigênio
9.
Adv Healthc Mater ; 11(16): e2200416, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708176

RESUMO

Thromboembolic stroke is typically characterized by the activation of platelets, resulting in thrombus in the cerebral vascular system, leading to high morbidity and mortality globally. Intravenous thrombolysis by tissue plasminogen activator (tPA) administration within 4.5 h from the onset of symptoms is providing a standard therapeutic strategy for ischemic stroke, but this reagent simultaneously shows potential serious adverse effects, e.g., hemorrhagic transformation. Herein, a novel delivery platform based on Annexin V and platelet membrane is developed for tPA (APLT-PA) to enhance targeting efficiency, therapeutic effects, and reduce the risk of intracerebral hemorrhage in acute ischemic stroke. After preparation by extrusion of platelet membrane and subsequent insertion of Annexin V to liposomes, APLT-PA exhibits a high targeting efficiency to activated platelet in vitro and thrombosis site in vivo, due to the binding to phosphatidylserine (PS) and activated platelet membrane proteins. One dose of APLT-PA leads to obvious thrombolysis and significant improvement of neurological function within 7 days in mice with photochemically induced acute ischemic stroke. This study provides a novel, safe platelet-biomimetic nanomedicine for precise thrombolytic treatment of acute ischemic stroke, and offers new theories for the design and exploitation of cell-mimetic nanomedicine for diverse biomedical applications.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Anexina A5/uso terapêutico , Biomimética , Plaquetas , Fibrinolíticos , Camundongos , Nanomedicina , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica/efeitos adversos , Ativador de Plasminogênio Tecidual/efeitos adversos
10.
Sci Adv ; 8(19): eabn1805, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544569

RESUMO

Cell-based drug carriers are mostly prepared in vitro, which may negatively affect the physiological functions of cells, and induce possible immune rejections when applied to different individuals. In addition, the immunosuppressive tumor microenvironment limits immune cell-mediated delivery. Here, we report an in vivo strategy to construct cell-based nanomedicine carriers, where bacteria-mimetic gold nanoparticles (GNPs) are intravenously injected, selectively phagocytosed by phagocytic immune cells, and subsequently self-assemble into sizable intracellular aggregates via host-guest interactions. The intracellular aggregates minimize exocytosis of GNPs from immune cells and activate the photothermal property via plasmonic coupling effects. Phagocytic immune cells carry the intracellular GNP aggregates to melanoma tissue via inflammatory tropism. Moreover, an initial photothermal treatment (PTT) of the tumor induces tumor damage that subsequently provides positive feedback to recruit more immune cell-based carriers for enhanced targeting efficiency. The optimized secondary PTT notably improves antitumor immunotherapy, further strengthened by immune checkpoint blockade.


Assuntos
Melanoma , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Bactérias , Linhagem Celular Tumoral , Ouro , Humanos , Melanoma/tratamento farmacológico , Nanomedicina , Microambiente Tumoral
11.
Front Psychol ; 13: 813620, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330726

RESUMO

China is experiencing high social inequality accompanying influential education reforms. The Independent Freshmen Admission (IFA) policy was one of the multiple strategies in higher education reforms in China against the social context of high social inequality and the expansion of higher education. By comparing students admitted through IFA with those admitted by the National College Entrance Examination (NCEE), we examined how family advantages contributed to higher education inequality in terms of educational opportunity, process, and results. Using data from an elite university in Beijing, we found that: (1) Family advantages improved a student's likelihood of being admitted through IFA, exhibiting opportunity inequality. (2) No significant difference in academic grades existed between the students admitted through IFA and NCEE. In comprehensive quality, however, those recruited through IFA performed significantly better than those admitted through NCEE. (3) Family social capital not only increased the likelihood of students being admitted through IFA but also, through direct and indirect effects, increased their comprehensive quality performance in terms of receiving student association and social practice awards.

12.
Disaster Med Public Health Prep ; 16(2): 706-713, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33729123

RESUMO

OBJECTIVES: Understanding people's perception of community resilience to disaster is important. This study explores the correlations of household livelihood assets, the adopted household disaster preparedness activities, and individuals' assessment of community resilience. METHODS: The data was collected in 2018 by surveying a group of survivors affected by the 2008 Wenchuan earthquake in China. The CART (Community Advancing Resilience Toolkit) was used to measure individuals' perception of community resilience, while the livelihood assets included financial, physical, natural, human, and social capitals owned by the family, and the preparedness contained 13 activities. Ordinary least squares (OLS) regression models were used to test our hypotheses. RESULTS: Social capital is consistently and positively associated with the overall individuals' perceived community resilience, while the natural, human, and financial capitals' effects are not significant. The awareness and participation preparedness activities are positively correlated with the perceived community resilience, but the material preparedness activities are not. CONCLUSIONS: Social capital and disaster preparedness activities are critical in building community resilience. Community resilience can be achieved by making the community more connected and by providing disaster preparedness interventions.


Assuntos
Planejamento em Desastres , Desastres , Terremotos , Resiliência Psicológica , Capital Social , China , Características da Família , Humanos
13.
Nanoscale Horiz ; 6(11): 907-912, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34694311

RESUMO

In this design, small CuS nanoparticles (NPs) were intracellularly self-assembled into large supramolecular aggregates via host-guest interactions between sequentially internalized ß-cyclodextrin-capped CuS NPs and ferrocene-capped CuS NPs inside macrophages, thus the efflux of CuS NPs was significantly inhibited during the macrophage-hitchhiking delivery. Biodistribution studies in mice confirmed the dramatically enhanced deposition of CuS NPs in the tumor tissue of mice injected with macrophages carrying intracellular CuS aggregates, in comparison to that of mice treated with macrophages carrying CuS NPs. In response to the inflammatory tumor microenvironment, the oxidation of ferrocene would dissociate the ß-cyclodextrin-ferrocene host-guest pair, driving disassembly of the CuS aggregates and release of small CuS NPs for deep tissue penetration and enhanced photothermal therapy. This precisely controlled intracellular self-assembly and disassembly of the nanomedicine inside macrophages provides a novel cell-hitchhiking delivery strategy that not only minimizes premature leakage of the nanomedicine but also greatly improves the delivery efficiency and tumor penetration for safe, effective tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Cobre , Macrófagos , Camundongos , Terapia Fototérmica , Distribuição Tecidual , Microambiente Tumoral
14.
Biomaterials ; 275: 120822, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34062419

RESUMO

The hypoxic tumor microenvironment (TME) and non-specific distribution of sonosensitizers are two major obstacles that limit practical applications of sonodynamic therapy (SDT) in combating tumors. Here we report a hypoxia-responsive nanovesicle (hMVs) as delivery vehicles of a sonosensitizer to enhance the efficacy of SDT via specific payload release and local oxygenation in the tumor. The nanovesicles are composed of densely packed manganese ferrite nanoparticles (MFNs) embedded in hypoxia-responsive amphiphilic polymer membranes. With δ-aminolevulinic acid (ALA) loaded in the hollow cavities, the hMVs could rapidly dissociate into discrete nanoparticles in the hypoxic TME to release the payload and induce the generation of reactive oxygen species (ROS) under ultrasound (US) radiation. Meanwhile, the released MFNs could catalytically generate O2 to overcome the hypoxic TME and thus enhance the efficacy of SDT. After treatment, the dissociated MFNs could be readily excreted from the body via renal clearance to reduce long term toxicity. In vitro and in vivo experiments displayed effective tumor inhibition via hMVs-mediated SDT, indicating the great potential of this unique nanoplatform in effective SDT by generating sufficient ROS in deep-seated hypoxic tumors that are not readily accessible by conventional photodynamic therapy.


Assuntos
Hipóxia , Nanopartículas , Linhagem Celular Tumoral , Humanos , Espécies Reativas de Oxigênio , Microambiente Tumoral
15.
Chem Sci ; 12(22): 7727-7734, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-34168825

RESUMO

Aggregation-induced emission (AIE) based fluorophores (AIEgens) have attracted increasing attention for biomedical applications due to their unique optical properties. Here we report an AIE photosensitizer functionalized CB[7], namely AIECB[7], which could spontaneously self-assemble into nanoaggregates in aqueous solutions. Interestingly, the carbonyl-lace of CB[7] may potentially act as a proton acceptor in an acidic environment to fine-tune the fluorescence and singlet oxygen generation of AIECB[7] nanoaggregates by regulating the inner stacking of AIEgens. Additionally, benefiting from the guest-binding properties of CB[7], oxaliplatin was included into AIECB[7] nanoaggregates for combined photodynamic therapy and supramolecular chemotherapy. To show the modular versatility of this supramolecular system, a hypoxia-activatable prodrug banoxantrone (AQ4N) was loaded into AIECB[7] nanoaggregates, which exhibited synergistic antitumor effects on a multicellular tumor spheroid model (MCTS). This work not only provides AIECB[7] for versatile theranostic applications, but also offers important new insights into the design and development of macrocycle-conjugated AIE materials for diverse biomedical applications.

16.
Angew Chem Int Ed Engl ; 60(32): 17570-17578, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34041833

RESUMO

The clinical application of chemodynamic therapy is impeded by the insufficient intracellular H2 O2 level in tumor tissues. Herein, we developed a supramolecular nanoparticle via a simple one-step supramolecular polymerization-induced self-assembly process using platinum (IV) complex-modified ß-cyclodextrin-ferrocene conjugates as supramolecular monomers. The supramolecular nanoparticles could dissociate rapidly upon exposure to endogenous H2 O2 in the tumor and release hydroxyl radicals as well as platinum (IV) prodrugs in situ, which is reduced into cisplatin to significantly promote the generation of H2 O2 in the tumor tissue. Thus, the supramolecular nanomedicine overcomes the limitation of conventional chemodynamic therapy via the self-augmented cascade radical generation and drug release. In addition, dissociated supramolecular nanoparticles could be readily excreted from the body via renal clearance to effectively avoid systemic toxicity and ensure long term biocompatibility of the nanomedicine. This work may provide new insights on the design and development of novel supramolecular nanoassemblies for cascade chemo/chemodynamic therapy.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Polímeros/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Feminino , Compostos Ferrosos/síntese química , Compostos Ferrosos/metabolismo , Compostos Ferrosos/uso terapêutico , Compostos Ferrosos/toxicidade , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/metabolismo , Metalocenos/síntese química , Metalocenos/metabolismo , Metalocenos/uso terapêutico , Metalocenos/toxicidade , Camundongos Endogâmicos BALB C , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Platina/química , Polimerização , Polímeros/síntese química , Polímeros/metabolismo , Polímeros/toxicidade , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Pró-Fármacos/toxicidade , beta-Ciclodextrinas/síntese química , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/uso terapêutico , beta-Ciclodextrinas/toxicidade
17.
Biomater Sci ; 9(10): 3804-3813, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33881050

RESUMO

Nano-graphene oxide (NGO) has attracted increasing attention as an advanced drug delivery system. However, the current surface functionalization and drug-loading of NGO either rely on π-π stacking that is limited to aromatic molecules, or covalent conjugation that requires tedious synthesis. Herein, we developed the first cucurbit[7]uril (CB[7])-conjugated NGO (NGO-CB[7]) that allows non-covalent, modular surface functionalization and drug loading via not only traditional π-π stacking interactions between the NGO surface and functional molecules, but also strong host-guest interactions between CB[7] and guest payloads or adamantane (ADA)-tagged functional molecules, for more versatile biomedical applications. To this end, chlorin e6 (Ce6, a photosensitizer), banoxantrone dihydrochloride (AQ4N, a hypoxia-responsive prodrug) and oxaliplatin (OX, a guest of CB[7]) were co-loaded onto NGO-CB[7] via π-π stacking and host-guest interactions, respectively. Subsequently, ADA-tagged hyaluronic acid (ADA-HA) wrapped NGO-CB[7] non-covalently via CB[7]-ADA host-guest interactions to improve the physiological stability and overall biocompatibility of this supramolecular nanosystem, and to enable targeted delivery into cancer cells with CD44 receptors overexpressed. Remarkably, this supramolecular nanomedicine exhibited significant antitumor efficacy via combined photothermal/photodynamic therapy (PTT/PDT) from NGO/Ce6, as well as dual chemotherapy from OX and AQ4N (activated by PDT-enhanced hypoxia), in vitro and in vivo. This study not only offers a new supramolecular inorganic/organic hybrid nanosystem for multi-modality cancer therapy, but may also provide important new insights into noncovalent functionalization of other carbon nanomaterials and inorganic nanomaterials leading to multifunctional drug delivery systems.


Assuntos
Nanomedicina , Neoplasias , Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Neoplasias/tratamento farmacológico , Óxidos
18.
Theranostics ; 11(3): 1513-1526, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391548

RESUMO

Poisons always have fascinated humankind. Initially considered as deleterious or hazardous substances, the modern era has witnessed the controlled utilization of dangerous poisons in medicine and cosmetics. Simultaneously, antidotes have become crucial as reversal agents to counteract the effects of a poison, and they are also used today to positively cancel the benefits of a poison after use. Currently, the majority of poisons are composed of small molecules. This review focuses on recent developments to reverse or prevent toxic effects of poisons by encapsulation in host molecules. Cyclodextrins, cucurbiturils, acyclic cucurbituril derivatives, calixarenes, and pillararenes, have been reported to largely impact the effects of toxic compounds, thus extending the current paradigm of small molecule antidotes by adding a new family of macrocyclic compounds to the current arsenal of antidotes. Along this line of research, endogenous "harmful" species are also sequestered by one or more of these supramolecular host molecules, expanding the potential of supramolecular antidotes to diverse therapeutic areas.


Assuntos
Antídotos/farmacologia , Compostos Macrocíclicos/farmacologia , Venenos/toxicidade , Animais , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia
19.
Soc Sci Med ; 270: 113641, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33388618

RESUMO

BACKGROUND: Disaster experiences have long-term health effects. However, less is known about the pathways of the association between disaster experiences and people's long-term health. We aimed to examine the long-term (10-year) effect of housing damage in the 2008 Wenchuan earthquake on survivors' health and to explore the pathways of the long-term effect. METHODS: We used data from a survey conducted in 2018 in rural areas affected by the 2008 Wenchuan earthquake. The survey collected information on housing damage caused by the earthquake from survivors aged 18 years old or above. Our primary outcome was dichotomous self-rated health in 2018. We considered decreased living standards and debt burden as mediators. To examine the long-term effect of housing damage on health, we performed multivariable binary logistic regression models. We also performed mediation analyses using the "KHB-method". RESULTS: Compared with no/slight damage, serious damage (odds ratio (OR): 1.50, 95% confidence interval (CI): 1.11,2.04) and collapse (OR: 1.57, 95% CI: 1.13,2.18) were associated with a higher risk of poor health. Decreased living standards and debt burden mediated 8.49% and 4.79%, respectively, of the association between serious damage and poor health and 10.64% and 6.10%, respectively, of the association between collapse and poor health. CONCLUSION: Housing damage in a natural disaster is a long-term risk for survivors' health. Long-term policies and interventions are necessary to protect and promote the health of survivors who experience housing damage. In addition to house reconstruction assistance, policies and interventions can be designed to promote living standards and financial situations to protect survivors' health.


Assuntos
Desastres , Terremotos , Transtornos de Estresse Pós-Traumáticos , Adolescente , China/epidemiologia , Habitação , Humanos , Sobreviventes
20.
Angew Chem Int Ed Engl ; 60(2): 618-623, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33128291

RESUMO

Due to the inherent resistance of bacterial biofilms to antibiotics and their serious threat to global public health, novel therapeutic agents and strategies to tackle biofilms are urgently needed. To this end, we designed and synthesized a novel guanidinium-functionalized pillar[5]arene (GP5) that exhibited high antibacterial potency against Gram-negative E. coli (BH101) and Gram-positive S. aureus (ATCC25904) strains. More importantly, GP5 effectively disrupted preformed E. coli biofilms by efficient penetration through biofilm barriers and subsequent destruction of biofilm-enclosed bacteria. Furthermore, host-guest complexation between GP5 and cefazolin sodium, a conventional antibiotic that otherwise shows negligible activity against biofilms, exhibited much enhanced, synergistic disruption activity against E. coli biofilms, thus providing a novel supramolecular platform to effectively disrupt biofilms.


Assuntos
Antibacterianos/síntese química , Calixarenos/química , Guanidina/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cefazolina/farmacologia , Escherichia coli/fisiologia , Microscopia Confocal , Staphylococcus aureus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...