Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(18): 4502-4505, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525032

RESUMO

We report a novel, to the best of our knowledge, approach for injection seeding of pulsed optical parametric oscillators (OPOs), which can provide spectral control over the full tuning range. Bandwidth reduction down to single-mode operation is realized across the pulsed tuning range by deploying a hybrid design, where a continuous-wave (cw) OPO injection seeds the pulsed OPO in a single composite cavity. By exploiting two identical MgO-doped periodically poled lithium niobate crystals, the hybrid OPO provides signal pulses with a single-frequency linewidth as narrow as 7.2 MHz across 1510-1677 nm. The effect of cw injection seeding on pulsed OPO operation is also confirmed by reduced rise time, increased pump depletion, major reduction in threshold, and substantial enhancement in output power and extraction efficiency.

2.
Opt Lett ; 43(11): 2454-2457, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856402

RESUMO

We report a pulsed singly-resonant optical parametric oscillator (OPO) based on the new nonlinear crystal, orientation-patterned gallium phosphide (OP-GaP). Pumped by a Q-switched Nd:YAG laser at 1064 nm, and using a 40-mm-long OP-GaP crystal with a single grating period of Λ=16 µm, the OPO generates signal and idler output across 1.6-1.7 µm and 2.8-3.1 µm, respectively, under temperature tuning. For an average pump power of 4.8 W at 50 kHz pulse repetition rate, mid-infrared idler powers of up to ∼20 mW have been obtained at 2966 nm with high output stability. For pump pulses of ∼13 ns duration, the OPO generates ∼6 ns output signal pulses. From temperature-dependent wavelength tuning measurements at two different pump powers of 4.2 W and 1.2 W, a discrepancy of 11-17°C in the internal crystal temperature is estimated, implying that the OP-GaP sample suffers from increasing thermal effects at higher pump powers due to absorption.

3.
Opt Lett ; 42(18): 3694-3697, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914935

RESUMO

We report an optical parametric generator (OPG) based on the new nonlinear material, orientation-patterned gallium phosphide (OP-GaP). Pumped by a Q-switched nanosecond Nd:YAG laser at 1064 nm with 25 kHz pulse repetition rate, the OPG can be tuned across 1721-1850 nm in the signal and 2504-2787 nm in the idler. Using a 40-mm-long crystal in single-pass configuration, we have generated a total average output power of up to ∼18 mW, with ∼5 mW of idler power at 2670 nm, for 2 W of input pump power. The OPG exhibits a passive stability in total output power better than 0.87% rms over 1 h, at a crystal temperature of 120°C, compared to 0.14% rms for the input pump. The output signal pulses, recorded at 1769 nm, have duration of 5.9 ns for input pump pulses of 9 ns. Temperature-dependent loss measurements for the pump polarization along the [100] axis in the OP-GaP crystal have also been performed, for the first time, indicating a drop in transmission from 28.8% at 50°C to 19.4% at 160°C.

4.
Opt Lett ; 42(11): 2193-2196, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569879

RESUMO

We report a tunable, single-pass, pulsed nanosecond difference-frequency generation (DFG) source based on the new semiconductor nonlinear material, orientation-patterned gallium phosphide (OP-GaP). The DFG source is realized by mixing the output signal of a nanosecond OPO tunable over 1723-1827 nm with the input pump pulses of the same OPO at 1064 nm in an OP-GaP crystal, resulting in tunable generation over 233 nm in the mid-infrared from 2548 to 2781 nm. Using a 40-mm-long crystal, we have produced ∼14 mW of average DFG output power at 2719 nm for a pump power of 5 W and signal power of 1 W at 80 kHz repetition rate. To the best of our knowledge, this is the first single-pass nanosecond DFG source based on OP-GaP. The DFG output beam has a TEM00 spatial mode profile and exhibits passive power stability better than 1.7% rms over 1.4 h at 2774 nm, compared to 1.6% and 0.1% rms for the signal and pump, respectively. The OP-GaP crystal is recorded to have a temperature acceptance bandwidth of 17.7°C.

5.
Opt Express ; 23(21): 28091-103, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480467

RESUMO

We report a systematic study on the performance characteristics of a high-power, high-repetition-rate, picosecond ultraviolet (UV) source at 266 nm based on ß-BaB2O4 (BBO). The source, based on single-pass fourth harmonic generation (FHG) of a compact Yb-fiber laser in a two-crystal spatial walk-off compensation scheme, generates up to 2.9 W of average power at 266 nm at a pulse repetition rate of ~80 MHz with a single-pass FHG efficiency of 35% from the green to UV. Detrimental issues such as thermal effects have been studied and confirmed by performing relevant measurements. Angular and temperature acceptance bandwidths in BBO for FHG to 266 nm are experimentally determined, indicating that the effective interaction length is limited by spatial walk-off and thermal gradients under high-power operation. The origin of dynamic color center formation due to two-photon absorption in BBO is investigated by measurements of intensity-dependent transmission at 266 nm. Using a suitable theoretical model, two-photon absorption coefficients as well as the color center densities have been estimated at different temperatures. The measurements show that the two-photon absorption coefficient in BBO at 266 nm is ~3.5 times lower at 200°C compared to that at room temperature. The long-term power stability as well as beam pointing stability is analyzed at different output power levels and focusing conditions. Using cylindrical optics, we have circularized the generated elliptic UV beam to a circularity of >90%. To our knowledge, this is the first time such high average powers and temperature-dependent two-photon absorption measurements at 266 nm are reported at repetition rates as high as ~80 MHz.

6.
Opt Lett ; 40(16): 3897-900, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26274688

RESUMO

We report a high-power picosecond optical parametric oscillator (OPO) based on cylindrical MgO:PPLN synchronously pumped by an Yb-fiber laser. The singly resonant OPO is tunable in the near-infrared signal across 1413-1900 nm and mid-infrared idler over 2418-4307 nm by angle tuning of the crystal at room temperature. With non-optimized output coupling of ∼10%, the OPO simultaneously delivers 2.4 W of signal at 1664 nm and 1.7 W of idler at 2950 nm at an overall extraction efficiency of ∼45% with high beam-pointing stability <30 µrad and <14 µrad for the signal and idler, respectively. The generated signal and idler exhibit passive power stability better than 1% rms and 0.8% rms over 15 h, respectively, in high beam quality with TEM(00) profile. The extracted signal pulses from the OPO have duration of 15.2 ps with a spectral bandwidth of 0.7 nm, corresponding to a time-bandwidth product of ΔυΔτ∼1.2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA