Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(26): eadm7813, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924401

RESUMO

The global meridional overturning circulation (GMOC) is important for redistributing heat and, thus, determining global climate, but what determines its strength over Earth's history remains unclear. On the basis of two sets of climate simulations for the Paleozoic characterized by a stable GMOC direction, our research reveals that GMOC strength primarily depends on continental configuration while climate variations have a minor impact. In the mid- to high latitudes, the volume of continents largely dictates the speed of westerly winds, which in turn controls upwelling and the strength of the GMOC. At low latitudes, open seaways also play an important role in the strength of the GMOC. An open seaway in one hemisphere allows stronger westward ocean currents, which support higher sea surface heights (SSH) in this hemisphere than that in the other. The meridional SSH gradient drives a stronger cross-equatorial flow in the upper ocean, resulting in a stronger GMOC. This latter finding enriches the current theory for GMOC.

2.
Natl Sci Rev ; 10(6): nwad051, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37181086

RESUMO

Coals and evaporites are commonly used as qualitative indicators of wet and dry environments in deep-time climate studies, respectively. Here, we combine geological records with climate simulations to establish quantitative relationships of coals and evaporites with temperature and precipitation over the Phanerozoic. We show that coal records were associated with a median temperature of 25°C and precipitation of 1300 mm yr-1 before 250 Ma. Afterwards, coal records appeared with temperatures between 0°C and 21°C and precipitation of 900 mm yr-1. Evaporite records were associated with a median temperature of 27°C and precipitation of 800 mm yr-1. The most remarkable result is that net precipitation associated with coal and evaporite records remained constant across time. The results here have important implications for quantifying climate conditions for other lithologic indicators of climate and for predicting exogenetic ore deposits.

3.
Sci Adv ; 9(10): eadf7209, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36888715

RESUMO

Shifts in the position of the intertropical convergence zone (ITCZ) have great importance for weather, climate, and society. The ITCZ shifts have been extensively studied in current and future warmer climate; however, little is known for its migration in the past on geological time scales. Using an ensemble of climate simulations over the past 540 million years, we show that ITCZ migrations are controlled primarily by continental configuration through two competing pathways: hemispheric radiation asymmetry and cross-equatorial ocean heat transport. The hemispheric asymmetry of absorbed solar radiation is produced mainly by land-ocean albedo contrast, which can be predicted using only the landmass distribution. The cross-equatorial ocean heat transport is strongly associated with the hemispheric asymmetry of surface wind stress, which is, in turn, controlled by the hemispheric asymmetry of ocean surface area. These results allow the influence of continental evolution on global ocean-atmosphere circulations to be understood through simple mechanisms that depend primarily on the latitudinal distribution of land.

4.
Sci Data ; 9(1): 371, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764652

RESUMO

The Phanerozoic Eon has witnessed considerable changes in the climate system as well as abundant animals and plant life. Therefore, the evolution of the climate system in this Eon is worthy of extensive research. Only by studying climate changes in the past can we understand the driving mechanisms for climate changes in the future and make reliable climate projections. Apart from observational paleoclimate proxy datasets, climate simulations provide an alternative approach to investigate past climate conditions of the Earth, especially for long time span in the deep past. Here we perform 55 snapshot simulations for the past 540 million years, with a 10-million-year interval, using the Community Earth System Model version 1.2.2 (CESM1.2.2). The climate simulation dataset includes global distributions of monthly surface temperatures and precipitation, with a 1° horizontal resolution of 0.9° × 1.25° in latitude and longitude. This open access climate dataset is useful for multidisciplinary research, such as paleoclimate, geology, geochemistry, and paleontology.

5.
Antibiotics (Basel) ; 10(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34943744

RESUMO

We describe the genomic and phenotypic characteristics of a novel member of Streptococcus with multidrug resistance (MDR) isolated from hospital samples. Strains SP218 and SP219 were identified as a novel Streptococcus, S. sputorum, using whole-genome sequencing and biochemical tests. Average nucleotide identity values of strains SP218 and SP219 with S. pseudopneumoniae IS7493 and S. pneumoniae ST556 were 94.3% and 93.3%, respectively. Genome-to-genome distance values of strains SP218 and SP219 with S. pseudopneumoniae IS7493 and S. pneumoniae ST556 were 56.70% (54-59.5%) and 56.40% (52.8-59.9%), respectively. The biochemical test results distinguished these strains from S. pseudopneumoniae and S. pneumoniae, particularly hydrolysis of equine urate and utilization of ribose to produce acid. These isolates were resistant to six major classes of antibiotics, which correlated with horizontal gene transfer and mutation. Notably, strain SP219 exhibited cytotoxicity against human lung epithelial cell line A549. Our results indicate the pathogenic potential of S. sputorum, and provide valuable insights into mitis group of streptococci.

6.
Int J Gen Med ; 14: 7077-7087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712059

RESUMO

BACKGROUND: Circadian clock genes play a crucial role in physiological and pathological processes, and their aberrant expressions were involved in various human cancers. The objective of this study was to investigate the expression level of Period circadian regulator 1 (PER1), an important circadian clock gene, and its biological roles in the development and progression of breast cancer. METHODS: The expression level of PER1 in breast cancer samples was analyzed using the Oncomine database, and the correlation between PER1 expression and clinicopathologic parameters was assessed by bc-GenExMiner v4.5. In addition, Kaplan-Meier plotter database was used to determine the prognostic significance of PER1 expression for breast cancer patients. The expressions of PER1 in breast cancer tissues and cells were validated by Western blot. The loss-or-gain assay of PER1 was conducted to investigate the effects of its expression on cell proliferation, migration and invasion of breast cancer. The relationship between PER1 expression and epigenetic modifications was further explored by Western blot. RESULTS: The results of the bioinformatics analysis revealed that the expression level of PER1 was markedly reduced in breast cancer tissues (P<0.001), and patients with high expression of PER1 had a better overall survival (HR:0.78, 95% CI:0.63-0.97, P=0.026) and recurrence-free survival (HR:0.83, 95% CI:0.75-0.93, P=0.001) than those with low expression. The assay of gene loss-or-gain indicated that downregulation of PER1 expression markedly promoted cell proliferation, migration and invasion (P<0.05), whereas these malignant phenotypes of breast cancer cells were inhibited by PER1 overexpression (P<0.05). Further studies showed that trichostatin A (TSA), a histone deacetylase inhibitor, induced the expression of PER1 protein in breast cancer cells (P<0.05). CONCLUSION: PER1 functions as a tumor suppressor in the development and progression of breast cancer, and its expression silencing might be regulated by epigenetic modifications.

7.
AMB Express ; 11(1): 87, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117935

RESUMO

Fusarium wilt is a devastating disease which impacts watermelon production. Soil fumigation using dazomet followed by biological organic fertilizer was applied to suppress the Fusarium wilt disease. We propose that fumigation suppresses the soil indigenous community, especially the soil-borne pathogens, while the utilization of bio-organic fertilizer facilitates the recovery of the soil microbiome to a beneficial, suppressive state through the introduction of plant growth-promoting microorganisms. Greenhouse experiment showed that applied biological organic fertilizer after dazomet fumigation effective restrain the disease incidence with a 93.6% disease control. Fumigation strongly decreased soil microbial diversity and altered relative taxa abundances, suggesting the possibility of niche release by the resident soil microbial community. Fumigation followed by bio-fertilizer transformed the soil microbial community composition and resulted in higher relative abundances of beneficial microbial groups such as Bacillus (8.5%) and Trichoderma (13.5%), coupled with lower Fusarium abundance compared to other treatments. Network analysis illustrated that soil fumigation decreased interactions within the soil microbial community with less nodes and links while bio-fertilizer addition promoted node interactions. In addition, bio-fertilizer addition after fumigation resulted in the beneficial species becoming the key network connectors. Collectively, fumigation appears to release the resident soil niche resulting in lower diversity while the beneficial microbes introduced by bio-fertilizer addition colonize these niches, leading to a more complex community with fewer pathogens that suppresses Fusarium wilt disease incidence.

8.
J Cell Physiol ; 235(7-8): 5764-5776, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31970777

RESUMO

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Rab11 is conserved gene-regulating vesicle traffic and reported to be involved in the pathogenesis of diabetes mellitus by affecting insulin sensitivity. We aimed to investigate the role of Rab11 in the pathogenesis of DPN. In this study, Rab11 expression decreased in the sciatic nerves of diabetic mice with impaired conduction function versus those of normal mice. In vitro experiment revealed interferon-γ (IFN-γ), not high glucose and interleukin 1ß was the main factor to lead to Rab11 downregulation in RSC96 cells. Again, both Rab11 knockdown and IFN-γ treatment caused cell viability inhibition and the decrease in BrdU-positive cells. In contrast, overexpression of Rab11 reversed IFN-γ-reduced cell proliferation. Furthermore, mTORC1 not mTORC2 was proven to be suppressed by IFN-γ treatment in RSC96 cells, indicated in decreased phospho-p70S6K. Inhibition of the mTORC1 pathway resulted in Rab11 expression downregulation in RSC96 cells. Activation of the mTORC1 pathway effectively prevented IFN-γ-reduced Rab11 expression in RSC96 cells. Also, glucose transporter 1 (GLUT1) was found to be downregulated in RSC96 cells with Rab11 silence and overexpression of GLUT1 reversed Rab11 blocking-caused proliferation inhibition. Taken together, our findings suggest that IFN-γ decreases Rab11 expression via the inhibition of the mTORC1 signaling pathway, causing reduced cell proliferation in Schwann cells of DPN by GLUT1 downregulation.


Assuntos
Neuropatias Diabéticas/genética , Transportador de Glucose Tipo 1/genética , Interferon gama/genética , Doenças do Sistema Nervoso Periférico/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Proliferação de Células/genética , Neuropatias Diabéticas/patologia , Regulação da Expressão Gênica/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos NOD , Doenças do Sistema Nervoso Periférico/patologia , Ratos , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA