Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; : 124247, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782153

RESUMO

There is a growing and urgent need for developing novel biomaterials and therapeutic approaches for efficient wound healing. Microneedles (MNs), which can penetrate necrotic tissues and biofilm barriers at the wound and deliver active ingredients to the deeper layers in a minimally invasive and painless manner, have stimulated the interests of many researchers in the wound-healing filed. Among various materials, polymeric MNs have received widespread attention due to their abundant material sources, simple and inexpensive manufacturing methods, excellent biocompatibility and adjustable mechanical strength. Meanwhile, due to the unique properties of nanomaterials, the incorporation of nanomaterials can further extend the application range of polymeric MNs to facilitate on-demand drug release and activate specific therapeutic effects in combination with other therapies. In this review, we firstly introduce the current status and challenges of wound healing, and then outline the advantages and classification of MNs. Next, we focus on the manufacturing methods of polymeric MNs and the different raw materials used for their production. Furthermore, we give a summary of polymeric MNs incorporated with several common nanomaterials for chronic wounds healing. Finally, we discuss the several challenges and future prospects of transdermal drug delivery systems using nanomaterials-based polymeric MNs in wound treatment application.

2.
Viruses ; 16(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675926

RESUMO

The transcription and replication of the Newcastle disease virus (NDV) strictly rely on the viral ribonucleoprotein (RNP) complex, which is composed of viral NP, P, L and RNA. However, it is not known whether other viral non-RNP proteins participate in this process for viral self-regulation. In this study, we used a minigenome (MG) system to identify the regulatory role of the viral non-RNP proteins V, M, W, F and HN. Among them, V significantly reduced MG-encoded reporter activity compared with the other proteins and inhibited the synthesis of viral mRNA and cRNA. Further, V interacted with NP. A mutation in residue W195 of V diminished V-NP interaction and inhibited inclusion body (IB) formation in NP-P-L-cotransfected cells. Furthermore, a reverse-genetics system for the highly virulent strain F48E9 was established. The mutant rF48E9-VW195R increased viral replication and apparently enhanced IB formation. In vivo experiments demonstrated that rF48E9-VW195R decreased virulence and retarded time of death. Overall, the results indicate that the V-NP interaction of the W195 mutant V decreased, which regulated viral RNA synthesis, IB formation, viral replication and pathogenicity. This study provides insight into the self-regulation of non-RNP proteins in paramyxoviruses.


Assuntos
Vírus da Doença de Newcastle , Proteínas Virais , Replicação Viral , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/fisiologia , Vírus da Doença de Newcastle/metabolismo , Animais , Proteínas Virais/metabolismo , Proteínas Virais/genética , Nucleoproteínas/metabolismo , Nucleoproteínas/genética , Doença de Newcastle/virologia , Doença de Newcastle/metabolismo , Linhagem Celular , Regulação Viral da Expressão Gênica , RNA Viral/genética , RNA Viral/metabolismo , Galinhas , Virulência , Ligação Proteica , Mutação
3.
Nanoscale ; 16(14): 6876-6899, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506154

RESUMO

The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Neoplasias/tratamento farmacológico , Terapia Combinada , Nanopartículas/metabolismo
4.
Mol Pharm ; 21(2): 373-392, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38252032

RESUMO

Intervertebral disc degeneration (IVDD) is commonly associated with many spinal problems, such as low back pain, and significantly impacts a patient's quality of life. However, current treatments for IVDD, which include conservative and surgical methods, are limited in their ability to fully address degeneration. To combat IVDD, delivery-system-based therapy has received extensive attention from researchers. These delivery systems can effectively deliver therapeutic agents for IVDD, overcoming the limitations of these agents, reducing leakage and increasing local concentration to inhibit IVDD or promote intervertebral disc (IVD) regeneration. This review first briefly introduces the structure and function of the IVD, and the related pathophysiology of IVDD. Subsequently, the roles of drug-based and bioactive-substance-based delivery systems in IVDD are highlighted. The former includes natural source drugs, nonsteroidal anti-inflammatory drugs, steroid medications, and other small molecular drugs. The latter includes chemokines, growth factors, interleukin, and platelet-rich plasma. Additionally, gene-based and cell-based delivery systems are briefly involved. Finally, the limitations and future development of the combination of therapeutic agents and delivery systems in the treatment of IVDD are discussed, providing insights for future research.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Qualidade de Vida , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular
5.
Heliyon ; 9(7): e17772, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483738

RESUMO

Introduction: Lung cancer is a prevalent malignancy globally, with approximately 20% of patients developing cardiopulmonary complications after lobectomy. In order to prevent complications, an accurate and personalized method based on machine learning (ML) is required. Methods: During the period of 2017-2021, a retrospective analysis was conducted on the medical records of patients who had undergone lobectomy for non-small cell lung cancer (NSCLC). We performed logical regression, decision tree (DT), random forest (RF), gradient boost DT, and eXtreme gradient boosting analyses to establish an ML model. The ten-fold cross-validation was used to evaluate the performance of multiple ML models based on various evaluation metrics, including accuracy, precision, recall, F1 score, and area under the receiver operating (AUC). Additionally, we also calculated the Kappa value of these model. Each model used grid search to optimize hyper-parameters and then used the interpretability method to provide explanations for the model's Decisions. Results: The study included 718 eligible patients, among whom the incidence of postoperative cardiopulmonary complications was 20.89%. The RF model showed the best comprehensive performance among all models, and its ten-fold cross-validation accuracy, precision, recall, F1 score, and AUC were (OR and 95% confidence interval [CI]) 0.786 (0.738-0.834), 0.803 (0.735-0.872), 0.738 (0.678-0.797), 0.766 (0.714-0.818), 0.856 (0.815-0.898), respectively. The kappa value of the RF model was 0.696 (0.617-0.768). The SHAP method showed that gender, age, and intraoperative blood loss were closely associated with postoperative cardiopulmonary complications. Conclusion: The application of ML methods for predicting postoperative cardiopulmonary complications based on clinical data of patients with NSCLC showed a good performance. The results indicate that ML combined with the SHAP individualized interpretation method has practical clinical value.

6.
Int J Pharm ; 626: 122130, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007849

RESUMO

Disulfiram (DSF), a Food and Drug Administration (FDA)-approved drug for the treatment of alcoholism, has been found to have antitumor activity. DSF showed better antitumor efficiency when it was used in combination with certain antitumor drugs. DSF plays an important role in cancer treatment. It has been used as multidrug resistance (MDR) modulator to reverse MDR and can also combine with copper ions (Cu2+), which will produce copper diethyldithiocarbamate (Cu[DDC]2) complex with antitumor activity. The synergistic targeted drug delivery for cancer treatment based on DSF, especially the combination with exogenous Cu2+ and its forms of administration, has attracted extensive attention in the biomedical field. In this review, we summarize these synergistic delivery systems, in the hope that they will contribute to the continuous optimization and development of more advanced drug delivery systems. Furthermore, we discuss the current limitation and future directions of DSF-based drug delivery systems in the field of tumor therapy. Hopefully, our work may inspire further innovation of DSF-based antitumor drug delivery systems.


Assuntos
Antineoplásicos , Neoplasias , Linhagem Celular Tumoral , Cobre/uso terapêutico , Dissulfiram , Ditiocarb/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Estados Unidos , United States Food and Drug Administration
7.
J Nanobiotechnology ; 19(1): 155, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039369

RESUMO

BACKGROUND: Theranostic nanoparticles (NPs) have achieved rapid development owing to their capacity for personalized multimodal diagnostic imaging and antitumor therapy. However, the efficient delivery and bulk accumulation of NPs in tumors are still the decisive factors in improving therapeutic effect. It is urgent to seek other methods to alters tumor microenvironment (like vascular permeability and density) for enhancing the efficiency of nanoparticles delivery and accumulation at the tumor site. METHODS: Herein, we developed a Raman-tagged hollow gold nanoparticle (termed as HAuNP@DTTC) with surface-enhanced Raman scattering (SERS) property, which could be accumulated efficiently in tumor site with the pre-irradiation of low-dose (3 Gy) X-ray and then exerted highly antitumor effect in breast cancer model. RESULTS: The tumor growth inhibition (TGI) of HAuNP@DTTC-induced photothermal therapy (PTT) was increased from 60% for PTT only to 97%, and the lethal distant metastasis of 4T1 breast cancer (such as lung and liver) were effectively inhibited under the X-ray-assisted PTT treatment. Moreover, with the strong absorbance induced by localized surface plasmon resonance in near-infrared (NIR) region, the signals of Raman/photoacoustic (PA) imaging in tumor was also significantly enhanced after the administration of HAuNP@DTTC, indicating it could be used as the Raman/PA imaging and photothermal agent simultaneously under 808 nm laser irradiation. CONCLUSIONS: Our studied of the as-prepared HAuNP@DTTC integrated the Raman/PA imaging and PTT functions into the single platform, and showed the good prospects for clinical applications especially with the low-dose X-ray irradiation as an adjuvant, which will be a productive strategy for enhancing drug delivery and accumulation in tumor theranostics.


Assuntos
Nanopartículas/uso terapêutico , Neoplasias/radioterapia , Terapia Fototérmica/métodos , Medicina de Precisão/métodos , Animais , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Ouro/uso terapêutico , Humanos , Fígado/patologia , Pulmão/patologia , Nanopartículas Metálicas/uso terapêutico , Imagem Multimodal/métodos , Fotoquimioterapia/métodos , Análise Espectral Raman , Raios X
8.
Adv Sci (Weinh) ; 8(5): 2002788, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33717843

RESUMO

Surgical resection is commonly used for therapeutic management of different solid tumors and is regarded as a primary standard of care procedure, but precise localization of tumor margins is a major intraoperative challenge. Herein, a generalized method by optimizing gold nanoparticles for intraoperative detection and photothermal ablation of tumor margins is introduced. These nanoparticles are detectable by highly sensitive surface-enhanced Raman scattering imaging. This non-invasive technique assists in delineating the two surgically challenged tumors in live mice with orthotopic colon or ovarian tumors. Any remaining residual tumors are also ablated by using post-surgical adjuvant photothermaltherapy (aPTT), which results in microscale heat generation due to interaction of these nanoparticles with near-infrared laser. Ablation of these post-operative residual micro-tumors prolongs the survival of mice significantly and delays tumor recurrence by 15 days. To validate clinical translatability of this method, the pharmacokinetics, biodistribution, Raman contrast, aPTT efficiency, and toxicity of these nanoparticles are also investigated. The nanoparticles have long blood circulation time (≈24 h), high tumor accumulation (4.87 ± 1.73%ID g-1) and no toxicity. This high-resolution and sensitive intraoperative approach is versatile and can be potentially used for targeted ablation of residual tumor after resection within different organs.

9.
Biomaterials ; 271: 120734, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33647873

RESUMO

Silver-based hybrid nanoprobes for surface-enhanced Raman scattering (SERS) imaging show their tremendous potential for precise biological detection and mediated phototherapy. However, the severe toxicity induced by Ag to normal mammalian cells hinders its further application. Herein, we presented a versatile bioinspired protein corona strategy through assembling bovine serum albumin (BSA) protected Raman tag DTTC-conjugated Ag-hybrid hollow Au nanoshells (hollow AgAu-DTTC-BSA), which their silver ion release and reactive oxygen species (ROS) generation are significantly suppressed, enabling no damage to normal cells and tissues, but can be reactivated on-demand under laser-irradiation at the tumor site. These nanoshells could also produce strong localized surface plasmon resonance for efficient-stable photothermal effect and enhanced SERS activity under laser irradiation, approved by both theoretical and experimental calculations. Furthermore, the biocompatible hollow AgAu-DTTC-BSA could detect both primary tumor tissues and tiny liver metastases (~0.18 mm) in orthotopic/subcutaneous CT26 colon tumor-bearing mice models. We also demonstrate their excellent therapeutic efficacy for colorectal solid neoplasms by accurate SERS imaging-guided photothermal therapy, simultaneously assisted with toxic Ag ion and ROS. These results suggest that hollow AgAu-DTTC-BSA is promising imaging assisted photothermal agents for solid tumor theranostics and enhancing the potential of Ag-based nanoparticles for practical treatment.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Neoplasias , Coroa de Proteína , Animais , Ouro , Camundongos , Fototerapia , Prata , Análise Espectral Raman
10.
Front Microbiol ; 12: 607451, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603723

RESUMO

Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.

11.
Virol J ; 18(1): 8, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407693

RESUMO

BACKGROUND: The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) is a major antigen that can induce protective antibodies in poultry. However, its antigenic epitopes have not been fully elucidated. Therefore, defining the linear epitopes of HN, especially neutralizing epitopes, will be useful for revealing its antigenic characterization. METHODS: In this study, we analyzed B-cell immunodominant epitopes (IDEs) of the HN protein from the vaccine strain LaSota using pepscan technology with LaSota-specific chicken hyperimmune antisera. We constructed IDEs-RFP plasmids and prepared anti-IDEs peptide mouse sera to identify IDEs through immunological tests. At last, the different diluted anti-IDE antisera were used in BHK-21 cells to perform the neutralization test. RESULTS: Five IDEs of the HN were screened and further verified by indirect immunofluorescence assays, dot blots and Western blots with NDV- and IDEs-specific antisera. All five IDEs showed good immunogenicity. IDE5 (328-342 aa) could recognize only class II NDV but did not react with the class I strain. Most of the IDEs are highly conserved among the different strains. A neutralization test in vitro showed that the peptide-specific mouse antisera of IDE4 (242-256 aa) and HN341-355, a reported neutralizing linear epitope, could partially neutralize avirulent LaSota as well as virulent strains at similar levels, suggesting that IDE4 might be a potential neutralizing linear epitope. CONCLUSION: The HN protein is a major protective antigen of NDV that can induce neutralizing antibodies in animals. We identified five IDEs of the HN using a pepscan approach with NDV-specific chicken hyperimmune antisera. The five IDEs could elicit specific antibodies in mice. IDE4 (242-256 aa) was identified as a novel potential neutralizing linear epitope. These results will help elucidate the antigenic epitopes of the HN and facilitate the development of NDV vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Proteína HN/imunologia , Epitopos Imunodominantes/imunologia , Vírus da Doença de Newcastle/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Galinhas , Sequência Conservada , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Proteína HN/química , Proteína HN/genética , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Camundongos , Modelos Moleculares , Testes de Neutralização , Vírus da Doença de Newcastle/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
12.
Biomaterials ; 234: 119763, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31978871

RESUMO

Chronic infections, caused by multidrug-resistant (MDR) bacteria, constitute a serious problem yet often underappreciated in clinical practice. The in situ monitoring of the bacteria-infected disease is also necessary to track and verify the therapeutic effect. Herein we present a facile approach to overcome the above challenges through a Raman tag 3,3'-diethylthiatricarbocyanine iodide (DTTC)-conjugated gold-silver nanoshells (AuAgNSs). With a strong responsive of the near-infrared laser due to surface plasmon resonance (SPR) from hybrid metallic nanoshell structure, AuAgNSs exhibits an efficient photothermal effect, and it simultaneously releases silver ions during laser irradiation to bacterial eradicate. Herein, two MDR bacteria strain, methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum ß-lactamase Escherichia coli, are chosen as models and studied both in vitro and in vivo. As a result, the AuAgNSs-DTTC substrates enable surface-enhanced Raman scattering imaging to provide a non-invasive and extremely high sensitive detection (down to 300 CFU mL-1 for MRSA) and prolonged tracking (at least 8 days) of residual bacteria. In a chronic MRSA-infected wound mouse model, the AuAgNSs gel-mediated photothermal therapy/silver-release leads to a synergistic would healing with negligible toxicity or collateral damage to vital organs. These results suggest that AuAgNSs-DTTC is a promising anti-bacterial tool for clinical translation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanoconchas , Preparações Farmacêuticas , Animais , Bactérias , Ouro , Camundongos , Prata , Análise Espectral Raman , Cicatrização
13.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31554683

RESUMO

Host factors play multiple essential roles in the replication and pathogenesis of mammalian neurotropic viruses. However, the cellular proteins of the central nervous system (CNS) involved in avian neurotropic virus infection have not been completely elucidated. Here, we employed a gene microarray to identify caspase recruitment domain-containing protein 11 (CARD11), a lymphoma-associated scaffold protein presenting brain-specific upregulated expression in a virulent neurotropic Newcastle disease virus (NDV)-infected natural host. Chicken primary neuronal cells infected with NDV appeared slightly syncytial and died quickly. CARD11 overexpression inhibited viral replication and delayed cytopathic effects; conversely, depletion of CARD11 enhanced viral replication and cytopathic effects in chicken primary neuronal cells. The inhibition of viral replication by CARD11 could not be blocked with CARD11-Bcl10-MALT1 (CBM) signalosome and NF-κB signaling inhibitors. CARD11 was found to interact directly with the viral phosphoprotein (P) through its CC1 domain and the X domain of P; this X domain also mediated the interaction between P and the viral large polymerase protein (L). The CARD11 CC1 domain and L competitively bound to P via the X domain that hindered the P-L interaction of the viral ribonucleoprotein (RNP) complex, resulting in a reduction of viral polymerase activity in a minigenome assay and inhibition of viral replication. Animal experiments further revealed that CARD11 contributed to viral replication inhibition and neuropathology in infected chicken brains. Taken together, our findings identify CARD11 as a brain-specific antiviral factor of NDV infection in avian species.IMPORTANCE Newcastle disease virus (NDV) substantially impacts the poultry industry worldwide and causes viral encephalitis and neurological disorders leading to brain damage, paralysis, and death. The mechanism of interaction between this neurotropic virus and the avian central nervous system (CNS) is largely unknown. Here, we report that host protein CARD11 presented brain-specific upregulated expression that inhibited NDV replication, which was not due to CARD11-Bcl10-MALT1 (CBM) complex-triggered activation of its downstream signaling pathways. The inhibitory mechanism of viral replication is through the CARD11 CC1 domain, and the viral large polymerase protein (L) competitively interacts with the X domain of the viral phosphoprotein (P), which hampers the P-L interaction, suppressing the viral polymerase activity and viral replication. An in vivo study indicated that CARD11 alleviated neuropathological lesions and reduced viral replication in chicken brains. These results provide insight into the interaction between NDV infection and the host defense in the CNS and a potential antiviral target for viral neural diseases.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/antagonistas & inibidores , Guanilato Ciclase/antagonistas & inibidores , Neurônios/virologia , Vírus da Doença de Newcastle/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Proteína 10 de Linfoma CCL de Células B/metabolismo , Ligação Competitiva , Encéfalo/patologia , Encéfalo/virologia , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Galinhas , Técnicas de Silenciamento de Genes , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Humanos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Doença de Newcastle/virologia , Receptor EphB2 , Transdução de Sinais
14.
Biomaterials ; 219: 119369, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351244

RESUMO

Theranostic nanoparticles (NPs) have recently generated substantial interest in translational cancer research due to their capabilities for multimodal diagnostic imaging and anti-cancer therapy. We herein developed cubic alpha-iron(III) oxide (α-Fe2O3) nanoparticles coated with ultrasmall gold nanoseeds, abbreviated as α-Fe2O3@Au, for the synergistic treatment of radiotherapy and photothermal therapy in breast cancer. The resultant NPs, with an average diameter of 49 nm, exhibited satisfactory biosafety profiles and provided tumor contrast in T2-weighted magnetic resonance (MR) imaging. The coating of ultrasmall Au nanoseeds exhibited strong absorption of near-infrared (NIR) laser that enabled to an efficacious photothermal therapy. It also sensitized radiotherapy, X-ray in this study, by generating large quantities of tumoricidal reactive oxygen species (ROS). Moreover, with the aid of NIR laser irradiation, the α-Fe2O3 substrate showed partial ablation and the Au NPs on its surface aggregated into a larger size (~13 nm), which has been proven to be the optimized size for radiotherapy. When tested in 4T1 murine breast cancer model, the α-Fe2O3@Au NPs significantly suppressed tumor growth (P < 0.01) when irradiated with a low-power laser (1.5 W/cm2 for 3 min) and an intermediate X-ray dose (6 Gy). Our results demonstrate that α-Fe2O3@Au, integrated with MRI, photothermal therapy, and radiosensitization, is a promising multifunctional theranostic nanomedicine for clinical applications.


Assuntos
Compostos Férricos/química , Ouro/química , Hipertermia Induzida , Lasers , Imageamento por Ressonância Magnética , Nanocompostos/química , Neoplasias/terapia , Fototerapia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Feminino , Compostos Férricos/toxicidade , Células HEK293 , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Nanocompostos/toxicidade , Nanocompostos/ultraestrutura , Neoplasias/diagnóstico por imagem , Testes de Toxicidade
15.
Viral Immunol ; 32(5): 221-229, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31094659

RESUMO

Matrix (M) protein of Newcastle disease virus (NDV) is an abundant protein that can induce a robust humoral immune response. However, its antigenic epitopes remain unknown. In this study, we used a pepscan approach to map linear B cell immunodominant epitopes (IDEs) of M protein with NDV-specific chicken antisera. The six epitopes with the highest reactivity by peptide scanning were obtained as IDE candidates. Among them, aa71-85 and aa349-363 were identified by immunological assays with NDV-specific or IDE-specific antisera. The minimal antigenic epitopes of the two IDEs were further characterized as 77MIDDKP82 and 354HTLAKYNPFK363. Moreover, an amino acid sequence alignment and immunoblot analysis revealed the conservation of the two IDEs in the M protein of strains of different genotypes. These two IDEs of M protein could be genetically eliminated as negative markers in recombinant NDV for serologically differential diagnosis in the development of marker vaccines.


Assuntos
Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Epitopos Imunodominantes , Vírus da Doença de Newcastle/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Galinhas , Mapeamento de Epitopos , Genótipo , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Vírus da Doença de Newcastle/classificação
16.
Acta Pharm Sin B ; 8(3): 349-359, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29881674

RESUMO

Raman spectroscopy, amplified by surface-enhanced Raman scattering (SERS) nanoparticles, can provide an in vivo imaging modality due to its high molecular specificity, high sensitivity, and negligible autofluorescence. The basis, composition, and methodologies developed for SERS nanoparticles are herein described. The research hotspots that are the focus in this paper are tumor imaging-guided theranostics and biosensing. The next breakthrough may be the development of biocompatible SERS nanoparticles and spectroscopic devices for clinical applications.

17.
ACS Appl Mater Interfaces ; 10(1): 193-206, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29215863

RESUMO

With the ever-growing threat of bacterial infections, especially for multidrug-resistant microbial infections, the development of highly effective treatment modalities to inhibit the infections is challenging. Although silver nanoparticles have been intensively applied as antimicrobial agent for decades, the therapeutic efficacy toward multidrug-resistant bacteria is still unsatisfactory. Here, we show that near-infrared (NIR) laser-excited silver triangular nanoparticles (Tri-Ag) can efficiently kill Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus both in vitro and in vivo. Notably, multidrug-resistant bacterial clinical isolates, including methicillin-resistant S. aureus and extended spectrum ß-lactamase E. coli strain were significantly inhibited by the combined treatment of the Tri-Ag with NIR laser irradiation due to their synergistic antibacterial ability. Taking the advantage of its strong near-infrared absorbance, photothermal treatment is also conducted with Tri-Ag, achieving a remarkable synergistic antibacterial effect to inhibit various bacteria at a rather low concentration of this agent. Given the above advantages, the combination therapy of Tri-Ag with assistance of NIR laser may find potential applications to strengthen the antimicrobial arsenal for fighting bacterial infections.


Assuntos
Nanopartículas Metálicas , Antibacterianos , Escherichia coli , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Prata , Cicatrização
18.
Virol J ; 14(1): 185, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28946881

RESUMO

BACKGROUND: Newcastle disease virus (NDV) causes severe diseases in avian species. Its fusion protein cleavage site (Fcs) is a major contributor to virulence and membrane fusion. Previous studies showed that a change from phenylalanine (F) to lysine (L) at position 117 of the virulent strain fusion protein, which has the polybasic amino acid Fcs motif "112RRQKR↓F117", blocked syncytium formation. However, we observed that F proteins of the virulent strain F48E9 and avirulent strain LaSota substituted with an identical cleavage motif, "112RRQRR↓L117", induced extensive and slight syncytium formation, respectively. Accordingly, we hypothesized that the difference in syncytium formation is caused by other regions of the fusion protein. RESULTS: The exchanged regions between the fusion proteins of two strains, F48E9 and LaSota, showed that the region from amino acid 118-499 plays an important role in modulation of fusogenic activity in transfected cells. Further dissection of this region indicated that replacement of two amino acids (N479D, R486S) in heptad repeat 2 (HR2) of the avirulent fusion protein by the virulent counterpart resulted in fusion promotion. Moreover, the role of these two amino acids in fusion is dependent on the unique Fcs sequence "RRQRR↓L". CONCLUSIONS: Our results demonstrated that two amino acids (D479, S486) of the virulent strain F protein with this unique Fcs were critical for promoting fusogenic activity, and residue F or L at position 117 did not affect syncytium formation. These findings provide novel insights into fusogenic triggering by the fusion protein and may be useful for designing antiviral peptides.


Assuntos
Motivos de Aminoácidos , Mutação , Vírus da Doença de Newcastle/fisiologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Virais de Fusão/genética , Animais , Linhagem Celular , Cricetinae , Células Gigantes/patologia , Células Gigantes/virologia , Fusão de Membrana , Proteólise , Proteínas Virais de Fusão/química
19.
PLoS One ; 12(9): e0183923, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863165

RESUMO

Newcastle disease virus (NDV) is a contagious agent of Newcastle disease in avian species and seriously affects the poultry industry. The cleavage site of the viral F protein (Fcs) is a key determinant of membrane fusion and viral virulence. In this study, we investigated the precise effect of variable amino acid sequences of the Fcs on fusogenic activity. Based on viral pathogenicity, the Fcs sequences of natural isolates (n = 1572) are classified into eight types of virulent Fcs (VFcs) with the motif "G/R/K-R-Q/R/K-R/K-R↓F" and ten types of the avirulent Fcs (AFcs) with the motif "G/R/E-R/K/Q-Q-G/E-R↓L". The VFcs is only found in the Class II cluster of viral classification and not in Class I. The AFcs exists in both Class I and II isolates. The VFc and AFc types present an evolutionary relationship with temporal distribution and host species. Using a fusion assay in vitro, VFcs-1 "RRQKR↓F" and VFcs-2 "RRQRR↓F" show the highest efficiency in triggering membrane fusion. The neutral residue Q at the P3 position of the VFcs plays an enhancing role compared to effect of the basic residues R and K. A single residue K at P3 or P5 is less efficient of the fusogenic activity in the VFcs with all basic residues. Moreover, the cleavage efficiencies of F0 proteins with different types of Fcs motifs do not appear to affect membrane fusion. Our findings offer insight into the effect of amino acid variation of the Fcs on the fusion triggered by NDV.


Assuntos
Aminoácidos/química , Vírus da Doença de Newcastle/genética , Proteínas Virais de Fusão/química , Códon , Análise Mutacional de DNA , Evolução Molecular , Genoma Viral , Nucleotídeos/genética , Análise de Componente Principal , Recombinação Genética , Proteínas Virais de Fusão/genética , Virulência , Replicação Viral
20.
Arch Virol ; 162(9): 2655-2665, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28550434

RESUMO

Rabies virus (RABV) causes an acute progressive viral encephalitis. Although currently licensed vaccines have an excellent safety and efficacy record, the development of a safer and more cost-effective vaccine is still being sought. An E1-deleted, replication-defective human adenovirus type 5 (HAd5) vector expressing RABV glycoprotein (HAd5-G) is thought to be a promising candidate vaccine for immune prophylaxis against rabies. Salmonella enterica serovar Typhimurium (S. Typhimurium) flagellin is a well-known immune adjuvant. In this work, we have researched the adjuvant effect of flagellins (FljB and FliC) for HAd5 in mice for the first time. We found that the recombinant HAd5 expressing RABV glycoprotein and FljB (HAd5-GB), if administered intramuscularly, but not orally, could induce stronger immune responses and provide better protection against rabies than HAd5-G or the recombinant HAd5 expressing glycoprotein and FliC (HAd5-GC). These results suggest that the recombinant HAd5-GB has potential for development as a promising rabies vaccine.


Assuntos
Adenoviridae/genética , Flagelina/imunologia , Glicoproteínas/imunologia , Fragmentos de Peptídeos/imunologia , Vacina Antirrábica/imunologia , Raiva/prevenção & controle , Proteínas Virais/imunologia , Adjuvantes Imunológicos , Animais , Linhagem Celular , Cricetinae , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Camundongos , Vacinas Sintéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...