Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(5): e0006024, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38557170

RESUMO

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.


Assuntos
Proteínas Reguladoras de Apoptose , Fator de Iniciação 4A em Eucariotos , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas de Ligação a RNA , Proteínas não Estruturais Virais , Replicação Viral , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Suínos , Linhagem Celular , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Interações Hospedeiro-Patógeno , Proteólise , Humanos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
J Colloid Interface Sci ; 650(Pt B): 1446-1456, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481782

RESUMO

The electrochemical CO2 reduction to specific multi-carbon product on copper-based catalysts is subjected to low activity and poor selectivity. Herein, catalyst structure, morphology, and chemical component are systematically studied for bolstering the activity and selectivity of as-prepared catalyzers in this study. Dendritic fibrous nano-silica spheres favor the loading of active species and the transport of reactant from the central radial channel. Cu/DFNS with high dispersion active sites are fabricated through urea-assisted precipitation way. The coexistence of Cu(I)/Cu(II) induces a close combination of Cu active sites and CO2 on the Cu/DFNS interface, promoting the CO2 activation and CC coupling. The Cu-O-Si interface (Cu phyllosilicate) can improve CO2 and CO attachment. Cu/DFNS show the utmost Faradaic efficiency of C2H4 with a value of 53.04% at -1.2 V vs. RHE. And more importantly, in-situ ATR-SEIRAS reveals that the CC coupling is boosted for effectively producing C2H4 as a consequence of the existence of *COL, *COOH, and *COH intermediates. The mechanism reaction path of Cu/DFNS is inferred to be *CO2 â†’ *COOH â†’ *CO â†’ *CO*COH â†’ C2H4. Our findings will be helpful to gain insight into the links between morphology, texture, chemical component of catalyzers, and electrochemical reduction of CO2, providing valuable guidance in the design of more efficient catalysts.

3.
Front Vet Sci ; 9: 937653, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754529

RESUMO

[This corrects the article DOI: 10.3389/fvets.2022.844058.].

4.
J Virol ; 96(14): e0212721, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758658

RESUMO

For more than 3 decades, mounting evidence has associated porcine reproductive and respiratory syndrome virus (PRRSV) infection with late-term abortions and stillbirths in sows and respiratory disease in piglets, causing enormous economic losses to the global swine industry. However, to date, the underlying mechanisms of PRRSV-triggered cell death have not been well clarified, especially in the pulmonary inflammatory injury characterized by the massive release of pro-inflammatory factors. Here, we demonstrated that PRRSV infection triggered gasdermin D-mediated host pyroptosis in vitro and in vivo. Mechanistically, PRRSV infection triggered disassembly of the trans-Golgi network (TGN); the dispersed TGN then acted as a scaffold for NLRP3 activation through phosphatidylinositol-4-phosphate. In addition, PRRSV replication-transcription complex (RTC) formation stimulated TGN dispersion and pyroptotic cell death. Furthermore, our results indicated that TMEM41B, an endoplasmic reticulum (ER)-resident host protein, functioned as a crucial host factor in the formation of PRRSV RTC, which is surrounded by the intermediate filament network. Collectively, these findings uncover new insights into clinical features as previously unrecognized mechanisms for PRRSV-induced pathological effects, which may be conducive to providing treatment options for PRRSV-associated diseases and may be conserved during infection by other highly pathogenic viruses. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the pathogens responsible for major economic losses in the global swine industry. Characterizing the detailed process by which PRRSV induces cell death pathways will help us better understand viral pathogenesis and provide implications for therapeutic intervention against PRRSV. Here, we showed that PRRSV infection induces GSDMD-driven host pyroptosis and IL-1ß secretion through NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in vitro and in vivo. Furthermore, the molecular mechanisms of PRRSV-induced NLRP3 inflammasome activation and pyroptosis are elucidated here. The dispersed trans-Golgi network (TGN) induced by PRRSV serves as a scaffold for NLRP3 aggregation into multiple puncta via phosphatidylinositol 4-phosphate (PtdIns4P). Moreover, the formation of PRRSV replication-transcription complex is essential for TGN dispersion and host pyroptosis. This research advances our understanding of the PRRSV-mediated inflammatory response and cell death pathways, paving the way for the development of effective treatments for PRRSV diseases.


Assuntos
Inflamassomos , Macrófagos Alveolares , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Proteínas Citotóxicas Formadoras de Poros , Piroptose , Animais , Feminino , Inflamassomos/metabolismo , Macrófagos Alveolares/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Síndrome Respiratória e Reprodutiva Suína/fisiopatologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose/fisiologia , Suínos
5.
Front Vet Sci ; 9: 844058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372537

RESUMO

African swine fever (ASF) is a highly contagious disease and provokes severe economic losses and health threats. At present no effective vaccine or treatment is available to prevent or cure ASF. Consequently, there is an urgent need to develop effective drugs against ASF virus (ASFV). Chlorine dioxide (ClO2), an ideal biocide, has broad-spectrum antibacterial activity and no drug resistance. Here, we found that ClO2 strongly inhibited ASFV replication in porcine alveolar macrophages (PAMs). The inhibitory effect of ClO2 occurred during viral attachment rather than entry, indicating that ClO2 suppressed the early stage of virus life cycle. ClO2 showed a potent anti-ASFV effect when added either before, simultaneously with, or after virus infection. Furthermore, ClO2 could destroy viral nucleic acids and proteins, which may contribute to its capacity of inactivating ASFV virions. The minimum concentration of degradation of ASFV nucleic acids by ClO2 is 1.2 µg/mL, and the degradation is a temperature-dependent manner. These have guiding significance for ClO2 prevention and control of ASFV infection in pig farms. In addition, ClO2 decreased the expression of ASFV-induced inflammatory cytokines. Overall, our findings suggest that ClO2 may be an ideal candidate for the development of novel anti-ASFV prophylactic and therapeutic drugs in swine industry.

6.
J Colloid Interface Sci ; 619: 407-418, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35405573

RESUMO

Heterojunction engineering is a very prospective approach to modulate the photocatalytic behaviors of semiconductors. Herein, Venus flytrap-like NiCo hydroxide nanoflowers (HNF) with surface modification by different contents of CoSn(OH)6 were fabricated in situ for the first time. Interestingly, CoSn(OH)6 nanocubes (NC) are monodispersed on the nanosheet surface of NiCo HNF. Experimental characterizations and theoretical calculations comprehensively demonstrate the surface Sn atoms of CoSn(OH)6 are effectively embedded into the NiCo HNF interlayers, and co-sharing of the hydroxyl enables intimate contact in the heterointerface of NiCo HNF/CoSn(OH)6 hybrids and thereby largely shortens the charge migrating distance, contributing to an efficient interfacial charge migration and promoting charge separation. The optimized NiCo HNF/CoSn(OH)6 exhibits the remarkably enhanced photocatalytic efficiency for CO2 reduction with a TON of 601.2 and the CO and CH4 yield is about 3 folds that over CoSn(OH)6 NC. DRIFTS reveals the reaction intermediates in the CO2 photocatalytic process and proposes a possible mechanism for photocatalytic CO2 reaction. These findings may pave the way for rational engineering design of non-precious highly-dispersed broadband visible-light-driven CO2 reduction heterostructure catalysts.

7.
PLoS Pathog ; 16(5): e1008543, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32401783

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) serves as an anti-inflammatory receptor, negatively regulating the innate immune response. TREM2 is mainly expressed on dendritic cells and macrophages, the target cells of porcine reproductive and respiratory syndrome virus (PRRSV). Thus, we investigated the potential role of TREM2 in PRRSV infection in porcine alveolar macrophages (PAMs). We found that there was an increased expression of TREM2 upon PRRSV infection in vitro. TREM2 silencing restrained the replication of PRRSV, whereas TREM2 overexpression facilitated viral replication. The cytoplasmic tail domain of TREM2 interacted with PRRSV Nsp2 to promote infection. TREM2 downregulation led to early activation of PI3K/NF-κB signaling, thus reinforcing the expression of proinflammatory cytokines and type I interferons. Due to the enhanced cytokine expression, a disintegrin and metalloproteinase 17 was activated to promote the cleavage of membrane CD163, which resulted in suppression of infection. Furthermore, exogenous soluble TREM2 (sTREM2)-mediated inhibition of PRRSV attachment might be attributed to its competitive binding to viral envelope proteins. In pigs, following PRRSV challenge in vivo, the expression of TREM2 in lungs and lymph nodes as well as the production of sTREM2 were significantly increased. These novel findings indicate that TREM2 plays a role in regulating PRRSV replication via the inflammatory response. Therefore, our work describes a novel antiviral mechanism against PRRSV infection and suggests that targeting TREM2 could be a new approach in the control of the PRRSV infection.


Assuntos
Glicoproteínas de Membrana/imunologia , NF-kappa B/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Transdução de Sinais/imunologia , Animais , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Suínos
8.
Dalton Trans ; 49(2): 312-321, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31782449

RESUMO

Bimetal mixed MOFs of [CoZn][(BDC)(DABCO)0.5] (CZ-BDO), [CoNi][(BDC)(DABCO)0.5] (CN-BDO), and [NiZn][(BDC)(DABCO)0.5] (NZ-BDO) were prepared under solvothermal conditions and further employed as highly active accelerants for converting carbon dioxide into cyclic carbonates. The characteristics of the bimetal compounds were revealed via various techniques, including ICP-OES, XRD, FT-IR, Raman, XPS, SEM, EDS maps, N2 adsorption, TG-DTG, and CO2/NH3-TPD. The catalytic results revealed that CZ-BDO is superior to the other samples for obtaining a satisfactory chloropropene carbonate (CPC) yield. The excellent catalytic activity may be owing to the presence of a solid solution within the Co and Zn bimetal sample, which provides synergistic catalysis in the carbon dioxide cycloaddition. In addition, the synergistic catalysis was further confirmed by the NH3-TPD profiles, whereby the amount of CZ-BDO basic sites was obviously enhanced compared to the other samples. Furthermore, DFT calculations were also performed to reveal the synergistic catalysis between Co and Zn for the coupling reaction. Additionally, when the coupling reaction was carried out at 100 °C for 5 h in the presence of 0.5 wt% epichlorohydrin (ECH) as a catalyst at 3.0 MPa, 99.31% conversion of ECH and 97.05% yield of CPC were obtained over the optimal CZ-BDO sample. Moreover, the bimetal sample can also efficiently convert other epoxides into the corresponding cyclic carbonates.

9.
Chem Commun (Camb) ; 55(57): 8305-8308, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31250846

RESUMO

A facile method was developed for surface modification of supported nano-Pd catalysts with tailorable wettability. The obtained Pd/TiO2@POS catalytic materials could be used in the controllable synthesis of styrene and ethylbenzene obtained from hydrogenation of phenylacetylene and the selective synthesis of imine and N-methylanilines via a reductive amination reaction. The precise modification of the hydrophilicity/hydrophobicity of the catalyst surface is crucial to realize this targeted transformation.

10.
Materials (Basel) ; 12(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013838

RESUMO

Nitrogen-doped carbon materials with enhanced CO2 adsorption were prepared by the salt and base co-activation method. First, resorcinol-formaldehyde resin was synthesized with a certain salt as an additive and used as a precursor. Next, the resulting precursor was mixed with KOH and subsequently carbonized under ammonia flow to finally obtain the nitrogen-doped carbon materials. A series of samples, with and without the addition of different salts, were prepared, characterized by XRD (X-ray powder diffraction), elemental analysis, BET (N2-adsorption-desorption analysis), XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy) and tested for CO2 adsorption. The results showed that the salt and base co-activation method has a remarkable enhancing effect on the CO2 capture capacity. The combination of KCl and KOH was proved to be the best combination, and 167.15 mg CO2 could be adsorbed with 1 g nitrogen-doped carbon at 30 °C under 1 atm pressure. The materials characterizations revealed that the introduction of the base and salt could greatly increase the content of doped nitrogen, the surface area and the amount of formed micropore, which led to enhanced CO2 absorption of the carbon materials.

11.
Front Microbiol ; 10: 3115, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038556

RESUMO

Porcine alveolar macrophages without the CD163 SRCR5 domain are resistant to porcine reproductive and respiratory syndrome virus (PRRSV) infection. However, whether the deletion of CD163 SRCR5 in MARC-145 cells confers resistance to PRRSV and interaction of which of the host proteins with CD163 is involved in virus uncoating remain unclear. Here we deleted the SRCR5 domain of CD163 in MARC-145 cells using CRISPR/Cas9 to generate a CD163ΔSRCR5 MARC-145 cell line. The modification of CD163 had no impact on CD163 expression. CD163ΔSRCR5 cells were completely resistant to infection by PRRSV-2 strains Li11, CHR6, TJM, and VR2332. The modified cells showed no cytokine response to PRRSV-2 infection and maintained normal cell vitality comparable with the WT cells. The resistant phenotype of the cells was stably maintained through cell passages. There were no replication transcription complexes in the CD163ΔSRCR5 cells. SRCR5 deletion did not disturb the colocalization of CD163 and PRRSV-N in early endosomes (EE). However, the interaction of the viral proteins GP2a, GP3, or GP5 with CD163, which is involved in virus uncoating was affected. Furthermore, 77 CD163-binding cellular proteins affected by the SRCR5 deletion were identified by LC-MS/MS. Inhibition of calpain 1 trapped the virions in EE and forced then into late endosomes but did not block viral attachment and internalization, suggesting that calpain 1 is involved in the uncoating. Overall, CD163ΔSRCR5 MARC-145 cells are fully resistant to PRRSV-2 infection and calpain 1 is identified as a novel host protein that interacts with CD163 to facilitate PRRSV uncoating.

12.
Acta Crystallogr Sect E Struct Rep Online ; 65(Pt 7): o1689, 2009 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-21582945

RESUMO

In the mol-ecule of the title compound, C(7)H(8)O(2), the phenol O and hydroxy-methyl C atoms lie in the ring plane [deviations of -0.015 (3) and and 0.013 (3) Å, respectively]. In the crystal structure, inter-molecular O-H⋯O hydrogen bonds link mol-ecules into a network. A weak C-H⋯π inter-action is also found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...