Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6511, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499704

RESUMO

Gravimetry is a versatile metrological approach in geophysics to accurately map subterranean mass and density anomalies. There is a broad diversification regarding the working principle of gravimeters, wherein atomic gravimeters are one of the most technologically progressive class of gravimeters which can monitor gravity at an absolute scale with a high-repetition without exhibiting drift. Despite the apparent utility for geophysical surveys, atomic gravimeters are (currently) laboratory-bound devices due to the vexatious task of transportation. Here, we demonstrated the utility of an atomic gravimeter on-site during a gravity survey, where the issue of immobility was circumvented with a relative spring gravimeter. The atomic gravimeter served as a means to map the relative data from the spring gravimeter to an absolute measurement with an effective precision of 7.7 µ Gal. Absolute measurements provide a robust and feasible method to define and control gravity data taken at different sites, or a later date, which is critical to analyze underground geological units, in particular when it is combined with other geophysical approaches.

2.
Nat Commun ; 15(1): 2754, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553481

RESUMO

It is enigmatic that M8+ earthquakes can take place at depth greater than 600 km inside the slab, where the P-T conditions generally do not favor seismic slip rate (~m/s) on faults. Here we provide fresh insights to the initial rupture and mechanism of the Mw 8.3 Sea of Okhotsk earthquake by analyzing high-frequency (up to 0.8 Hz) teleseismic array data. We determine the relative location and timing of two early subevents, and the geometry and velocity perturbation of a nearby structure anomaly. We found a small-scale (~30 × 60 × 60 km) ultralow (-18 ± 2%) P-wave velocity anomaly located beneath the Pacific slab around the 660 km discontinuity. The volatile-bearing highly melted nature of the anomaly provides significant buoyancy, stressing the slab dramatically closer to the critical condition for thermal runaway weakening that allows the rupture to propagate beyond the metastable olivine wedge, forming M8+ events. Enormous velocity reduction urges for further mineral physics and geodynamic investigations.

3.
Sci Adv ; 7(5)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33514553

RESUMO

Temperature plays a critical role in defining the seismogenic zone, the area of the crust where earthquakes most commonly occur; however, thermal controls on fault ruptures are rarely observed directly. We used a rapidly deployed seismic array to monitor an unusual earthquake cascade in 2018 at Lombok, Indonesia, during which two magnitude 6.9 earthquakes with surprisingly different rupture characteristics nucleated beneath an active arc volcano. The thermal imprint of the volcano on the fault elevated the base of the seismogenic zone beneath the volcanic edifice by 8 km, while also reducing its width. This thermal "squeezing" directly controlled the location, directivity, dynamics, and magnitude of the earthquake cascade. Earthquake segmentation due to thermal structure can occur where strong temperature gradients exist on a fault.

4.
Proc Natl Acad Sci U S A ; 116(52): 26367-26375, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822611

RESUMO

The 2016, moment magnitude (Mw) 7.8, Kaikoura earthquake generated the most complex surface ruptures ever observed. Although likely linked with kinematic changes in central New Zealand, the driving mechanisms of such complexity remain unclear. Here, we propose an interpretation accounting for the most puzzling aspects of the 2016 rupture. We examine the partitioning of plate motion and coseismic slip during the 2016 event in and around Kaikoura and the large-scale fault kinematics, volcanism, seismicity, and slab geometry in the broader Tonga-Kermadec region. We find that the plate motion partitioning near Kaikoura is comparable to the coseismic partitioning between strike-slip motion on the Kekerengu fault and subperpendicular thrusting along the offshore West-Hikurangi megathrust. Together with measured slip rates and paleoseismological results along the Hope, Kekerengu, and Wairarapa faults, this observation suggests that the West-Hikurangi thrust and Kekerengu faults bound the southernmost tip of the Tonga-Kermadec sliver plate. The narrow region, around Kaikoura, where the 3 fastest-slipping faults of New Zealand meet, thus hosts a fault-fault-trench (FFT) triple junction, which accounts for the particularly convoluted 2016 coseismic deformation. That triple junction appears to have migrated southward since the birth of the sliver plate (around 5 to 7 million years ago). This likely drove southward stepping of strike-slip shear within the Marlborough fault system and propagation of volcanism in the North Island. Hence, on a multimillennial time scale, the apparently distributed faulting across southern New Zealand may reflect classic plate-tectonic triple-junction migration rather than diffuse deformation of the continental lithosphere.

5.
Science ; 361(6398): 166-170, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29748323

RESUMO

Surveillance of clandestine nuclear tests relies on a global seismic network, but the potential of spaceborne monitoring has been underexploited. We used satellite radar imagery to determine the complete surface displacement field of up to 3.5 meters of divergent horizontal motion with 0.5 meters of subsidence associated with North Korea's largest underground nuclear test. Combining insight from geodetic and seismological remote sensing, we found that the aftermath of the initial explosive deformation involved subsidence associated with subsurface collapse and aseismic compaction of the damaged rocks of the test site. The explosive yield from the nuclear detonation with best-fitting source parameters for 450-meter depth was 191 kilotonnes of TNT equivalent. Our results demonstrate the capability of spaceborne remote sensing to help characterize large underground nuclear tests.

6.
Science ; 356(6334): 163-167, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408598

RESUMO

The deformation of mantle and crustal rocks in response to stress plays a crucial role in the distribution of seismic and volcanic hazards, controlling tectonic processes ranging from continental drift to earthquake triggering. However, the spatial variation of these dynamic properties is poorly understood as they are difficult to measure. We exploited the large stress perturbation incurred by the 2016 earthquake sequence in Kumamoto, Japan, to directly image localized and distributed deformation. The earthquakes illuminated distinct regions of low effective viscosity in the lower crust, notably beneath the Mount Aso and Mount Kuju volcanoes, surrounded by larger-scale variations of viscosity across the back-arc. This study demonstrates a new potential for geodesy to directly probe rock rheology in situ across many spatial and temporal scales.

7.
Sci Adv ; 3(1): e1601689, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28070561

RESUMO

The deformation at well-defined, narrow plate boundaries depends on the relative plate motion, but how the deformation takes place within a distributed plate boundary zone remains a conundrum. This was confirmed by the seismological analyses of the 2012 great Wharton Basin earthquakes [moment magnitude (Mw) 8.6], which suggested the rupture of several faults at high angles to one another. Using high-resolution bathymetry and seismic reflection data, we report the discovery of new N294°E-striking shear zones, oblique to the plate fabric. These shear zones are expressed by sets of normal faults striking at N335°E, defining the direction of the principal compressional stress in the region. Also, we have imaged left-lateral strike-slip faults along reactivated N7°E-oriented oceanic fracture zones. The shear zones and the reactivated fracture zones form a conjugate system of faults, which accommodate present-day intraplate deformation in the Wharton Basin.

9.
Science ; 332(6036): 1421-5, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21596953

RESUMO

Geophysical observations from the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki, Japan earthquake allow exploration of a rare large event along a subduction megathrust. Models for this event indicate that the distribution of coseismic fault slip exceeded 50 meters in places. Sources of high-frequency seismic waves delineate the edges of the deepest portions of coseismic slip and do not simply correlate with the locations of peak slip. Relative to the M(w) 8.8 2010 Maule, Chile earthquake, the Tohoku-Oki earthquake was deficient in high-frequency seismic radiation--a difference that we attribute to its relatively shallow depth. Estimates of total fault slip and surface secular strain accumulation on millennial time scales suggest the need to consider the potential for a future large earthquake just south of this event.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...