Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 341: 139997, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648173

RESUMO

BACKGROUND: Environmental exposure to dicofol (DCF), one of common organochlorine pesticides (OCPs) widely used for controlling agricultural pests, elicits a potential risk for human health due to its toxicity. However, potential physiological hazards of oral DCF exposure remain largely unknown. METHODS: Mice were exposed to relatively chronic and subacute DCF at different doses (5, 20 and 100 mg/kg) by gavage for 2 weeks. 1H NMR-based metabolomics was used to explore alterations of metabolic profiling induced by DCF exposure. Targeted metabolomics was subsequently employed to investigate the dose-dependent effects of oral DCF exposure on lipid metabolism and the gut microbiota-derived metabolites of mice. 16S rRNA gene sequencing was further employed to evaluate the changes of gut community of mice exposed to DCF. RESULTS: Oral exposure to DCF dose-dependently induced liver injury, manifested by hepatic lipogenesis, inflammation and liver dysfunction of mice. Typically, DCF exposure disrupted host fatty acids metabolism that were confirmed by marked alteration in the levels of related genes. DCF exposure also dose-dependently caused dysbiosis of the gut bacteria and its metabolites including altered microbial composition accompanied by inhibition of bacterial fermentation. CONCLUSION: These results provide metabolic evidence that DCF exposure dose-dependently induces liver lipidosis and disruption of the gut microbiota in mice, which enrich our views of molecular mechanism of DCF hepatoxicity.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Dicofol , RNA Ribossômico 16S/genética , Multiômica , Homeostase , Bactérias/genética , Disbiose/induzido quimicamente
2.
J Nanosci Nanotechnol ; 17(4): 2554-558, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29652125

RESUMO

In this paper, the CaMoO4:Eu3+ phosphors were prepared by a simple hydrothermal method assisted by the citric acid as the surfactant, and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and fluorescent spectrophotometry. The results of XRD show that the as-prepared samples are single phase. The process of the Ostwald ripening is controlled by the content of the citric acid in the hydrothermal reaction. The pH value of the precursor affects the shift of the charge transition band (CTB) in the excitation spectra. The reaction condition can strongly affect the luminescent intensity of the samples.

3.
J Nanosci Nanotechnol ; 15(12): 9407-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682360

RESUMO

In this paper, the Eu(3+)-doped molybdate (CaMoO4, ZnMoO4 and BaMoO4) phosphors have been prepared by a hydrothermal method through modulating the pH value of the precursor solution (pH = 8, 10, and 12, respectively). The crystalline phase, morphology, photoluminescent properties of the prepared samples were systematically characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectra. The results indicate that the photoluminescence and morphology can be affected by the precursor solution. And the growth of the ZnMoO4 crystals also can be affected by the pH value of the precursor solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...