Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(5): e2304219, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38011362

RESUMO

The recently discovered plastic/ductile inorganic thermoelectric (TE) materials open a new avenue for the fabrication of high-efficiently flexible TE devices, which can utilize the small temperature difference between human body and environment to generate electricity. However, the maximum power factor (PF) of current plastic/ductile TE materials is usually around or less than 10 µW cm-1 K-2 , much lower than the classic brittle TE materials. In this work, a record-high PF of 18.0 µW cm-1 K-2 at 375 K in plastic/ductile bulk SnSe2 -based crystals is reported, superior to all the plastic inorganic TE materials and flexible organic TE materials reported before. The origin of such high PF is from the modulation of material's stacking forms and polymorph crystal structures via simultaneously doping Cl/Br at Se-site and intercalating Cu inside the van der Waals gap, leading to the significantly enhanced carrier concentrations and mobilities. An in-plane fully flexible TE device made of the plastic/ductile SnSe2 -based crystals is successfully developed to show a record-high normalized maximum power density to 0.18 W m-1 under a temperature difference of 30 K. This work indicates that the plastic/ductile material can realize high TE power factor to achieve large output electric power density in flexible TE technology.

2.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37358218

RESUMO

Silver sulfide in monoclinic phase (α-Ag2S) has attracted significant attention owing to its metal-like ductility and promising thermoelectric properties near room temperature. However, first-principles studies on this material by density functional theory calculations have been challenging as both the symmetry and atomic structure of α-Ag2S predicted from such calculations are inconsistent with experimental findings. Here, we propose that a dynamical approach is imperative for correctly describing the structure of α-Ag2S. The approach is based on a combination of ab initio molecular dynamics simulation and deliberately chosen density functional considering both proper treatment of the van der Waals interaction and on-site Coulomb interaction. The obtained lattice parameters and atomic site occupations of α-Ag2S are in good agreement with experimental data. A stable phonon spectrum at room temperature can be obtained from this structure, which also yields a bandgap in accord with experimental measurements. The dynamical approach thus paves the way for studying this important ductile semiconductor in not only thermoelectric but also optoelectronic applications.

3.
Materials (Basel) ; 16(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37176250

RESUMO

Ge-Sb-Te compounds (GST), the well-known phase-change materials, are considered to be promising thermoelectric (TE) materials due to their decent thermoelectric performance. While Ge2Sb2Te5 and GeSb2Te4 have been extensively studied, the TE performance of GeSb4Te7 has not been well explored. Reducing the excessive carrier concentration is crucial to improving TE performance for GeSb4Te7. In this work, we synthesize a series of Se-alloyed GeSb4Te7 compounds and systematically investigate their structures and transport properties. Raman analysis reveals that Se alloying introduces a new vibrational mode of GeSe2, enhancing the interatomic interaction forces within the layers and leading to the reduction of carrier concentration. Additionally, Se alloying also increases the effective mass and thus improves the Seebeck coefficient of GeSb4Te7. The decrease in carrier concentration reduces the carrier thermal conductivity, depressing the total thermal conductivity. Finally, a maximum zT value of 0.77 and an average zT value of 0.48 (300-750 K) have been obtained in GeSb4Te5.5Se1.5. This work investigates the Raman vibration modes and the TE performance in Se-alloyed GeSb4Te7 sheddinglight on the performance optimization of other GST materials.

4.
ACS Nano ; 17(1): 657-667, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36542067

RESUMO

Black phosphorus (BP) has been demonstrated as a promising electrode material for supercapacitors. Currently, the main limitation of its practical application is the low electrical conductivity and poor structure stability. Hence, BP-based supercapacitors usually severely suffer from low capacitance and poor cycling stability. Herein, a chemically bridged BP/conductive g-C3N4 (BP/c-C3N4) hybrid is developed via a facile ball-milling method. Covalent P-C bonds are generated through the ball-milling process, effectively preventing the structural distortion of BP induced by ion transport and diffusion. In addition, the overall electrical conductivity is significantly enhanced owing to the sufficient coupling between BP and highly conductive c-C3N4. Moreover, the imbalanced charge distribution around the C atom can induce the generation of a local electric field, facilitating the charge transfer behavior of the electrode material. As a result, the BP/c-C3N4-20:1 flexible supercapacitor (FSC) exhibits an outstanding volumetric capacitance of 42.1 F/cm3 at 0.005 V/s, a high energy density of 5.85 mW h/cm3, and a maximum power density of 15.4 W/cm3. More importantly, the device delivers excellent cycling stability with no capacitive loss after 30,000 cycles.

5.
Adv Mater ; 35(1): e2110236, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36036433

RESUMO

Thermoelectric technology provides a promising solution to sustainable energy utilization and scalable power supply. Recently, Ag2 Q-based (Q = S, Se, Te) silver chalcogenides have come forth as potential thermoelectric materials that are endowed with complex crystal structures, high carrier mobility coupled with low lattice thermal conductivity, and even exceptional plasticity. This review presents the latest advances in this material family, from binary compounds to ternary and quaternary alloys, covering the understanding of multi-scale structures and peculiar properties, the optimization of thermoelectric performance, and the rational design of new materials. The "composition-phase structure-thermoelectric/mechanical properties" correlation is emphasized. Flexible and hetero-shaped thermoelectric prototypes based on Ag2 Q materials are also demonstrated. Several key problems and challenges are put forward concerning further understanding and optimization of Ag2 Q-based thermoelectric chalcogenides.

6.
Nat Commun ; 13(1): 7491, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470897

RESUMO

Inorganic semiconductors exhibit multifarious physical properties, but they are prevailingly brittle, impeding their application in flexible and hetero-shaped electronics. The exceptional plasticity discovered in InSe crystal indicates the existence of abundant plastically deformable two-dimensional van der Waals (2D vdW) materials, but the conventional trial-and-error method is too time-consuming and costly. Here we report on the discovery of tens of potential 2D chalcogenide crystals with plastic deformability using a nearly automated and efficient high-throughput screening methodology. Seven candidates e.g., famous MoS2, GaSe, and SnSe2 2D materials are carefully verified to show largely anisotropic plastic deformations, which are contributed by both interlayer and cross-layer slips involving continuous breaking and reconstruction of chemical interactions. The plasticity becomes a new facet of 2D materials for deformable or flexible electronics.

7.
Adv Sci (Weinh) ; 9(29): e2203436, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988133

RESUMO

The recently discovered ductile/plastic inorganic semiconductors pave a new avenue toward flexible thermoelectrics. However, the power factors of current ductile/plastic inorganic semiconductors are usually low (below 5 µW cm-1  K-2 ) as compared with classic brittle inorganic thermoelectric materials, which greatly limit the electrical output power for flexible thermoelectrics. Here, large plasticity and high power factor in bulk two-dimensional van der Waals (2D vdW) single-crystalline SnSe2 are reported. SnSe2 crystals exhibit large plastic strains at room temperature and they can be morphed into various shapes without cracking, which is well captured by the inherent large deformability factor. As a semiconductor, the electrical transport properties of SnSe2 can be readily tuned in a wide range by doping a tiny amount of halogen elements. A high power factor of 10.8 µW cm-1  K-2 at 375 K along the in-plane direction is achieved in plastic single-crystalline Br-doped SnSe2 , which is the highest value among the reported flexible inorganic and organic thermoelectric materials. Combining the good plasticity, excellent power factors, as well as low-cost and nontoxic elements, bulk 2D vdW single-crystalline SnSe2 shows great promise to achieve high power density for flexible thermoelectrics.

8.
Science ; 377(6608): 854-858, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981042

RESUMO

Flexible thermoelectrics provide a different solution for developing portable and sustainable flexible power supplies. The discovery of silver sulfide-based ductile semiconductors has driven a shift in the potential for flexible thermoelectrics, but the lack of good p-type ductile thermoelectric materials has restricted the reality of fabricating conventional cross-plane π-shaped flexible devices. We report a series of high-performance p-type ductile thermoelectric materials based on the composition-performance phase diagram in AgCu(Se,S,Te) pseudoternary solid solutions, with high figure-of-merit values (0.45 at 300 kelvin and 0.68 at 340 kelvin) compared with other flexible thermoelectric materials. We further demonstrate thin and flexible π-shaped devices with a maximum normalized power density that reaches 30 µW cm-2 K-2. This output is promising for the use of flexible thermoelectrics in wearable electronics.

9.
Adv Mater ; 34(19): e2108573, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35293020

RESUMO

To date, thermoelectric materials research stays focused on optimizing the material's band edge details and disfavors low mobility. Here, the paradigm is shifted from the band edge to the mobility edge, exploring high thermoelectricity near the border of band conduction and hopping. Through coalloying iodine and sulfur, the plain crystal structure is modularized of liquid-like thermoelectric material Cu2 Te with mosaic nanograins and the highly size mismatched S/Te sublattice that chemically quenches the Cu sublattice and drives the electronic states from itinerant to localized. A state-of-the-art figure of merit of 1.4 is obtained at 850 K for Cu2 (S0.4 I0.1 Te0.5 ); and remarkably, it is achieved near the Mott-Ioffe-Regel limit unlike mainstream thermoelectric materials that are band conductors. Broadly, pairing structural modularization with the high performance near the Mott-Ioffe-Regel limit paves an important new path towards the rational design of high-performance thermoelectric materials.

10.
Adv Mater ; 34(13): e2107479, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35040221

RESUMO

Wearable touch panels, a typical flexible electronic device, can recognize and feed back the information of finger touch and movement. Excellent wearable touch panels are required to accurately and quickly monitor the signals of finger movement as well as the capacity of bearing various types of deformation. High-performance thermistor materials are one of the key functional components, but to date, a long-standing bottleneck is that inorganic semiconductors are typically brittle while the electrical properties of organic semiconductors are quite low. Herein, a high-performance flexible temperature sensor is reported by using plastic Ag2 S with ultrahigh temperature coefficient of resistance of -4.7% K-1 and resolution of 0.05 K, and rapid response/recovery time of 0.11/0.11 s. Moreover, the temperature sensor shows excellent durability without performance damage or loss during force stimuli tests. In addition, a fully flexible intelligent touch panel composed of a 16 × 10 Ag2 S-film-based temperature sensor array, as well as a flexible printed circuit board and a deep-learning algorithm is designed for perceiving finger touch signals in real-time, and intelligent feedback of Chinese characters and letters on an app. These results strongly show that high-performance flexible inorganic semiconductors can be widely used in flexible electronics.

11.
ACS Appl Mater Interfaces ; 13(50): 60192-60199, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34847670

RESUMO

Ag2Se is a narrow band gap n-type semiconductor with high carrier mobility and low lattice thermal conductivity. It has high thermoelectric performance near room temperature. However, there is a noticeable data discrepancy for thermoelectric performance in the reported literature studies, which greatly hinders the rational understanding and potential application of this material. In this work, we comprehensively studied the homogeneity, reproducibility, and thermal stability of bulk Ag2Se prepared by melting and mechanical alloying methods followed by spark plasma sintering. By virtue of the atom probe topology technique, we revealed nanosized Ag- or Se-rich precipitates and micropores with Se-aggregated interfaces that have not been detected previously. The samples prepared by melting and spark plasma sintering exhibit the best homogeneity and repeatability in thermoelectric properties despite abundant nanoprecipitates. Moreover, the thermoelectric performance of Ag2Se is greatly improved by introducing a slight amount of excess selenium. The average zT can steadily reach 0.8-0.9 in the range of 300-380 K, which is among the highest values reported for Ag2Se-based materials. This work will rationalize the evaluation of the thermoelectric performance of Ag2Se.

12.
Adv Mater ; 33(10): e2007681, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33543550

RESUMO

Hetero-shaped thermoelectric (TE) generators (TEGs) can power the sensors used in safety monitoring systems of undersea oil pipelines, but their development is greatly limited by the lack of materials with both good shape-conformable ability and high TE performance. In this work, a new ductile inorganic TE material, Ag20 S7 Te3 , with high TE performance is reported. At 300-600 K, Ag20 S7 Te3 crystallizes in a body-centered cubic structure, in which S and Te atoms randomly occupy the (0, 0, 1) site. Due to the smaller generalized stacking fault energy in the ( 10 1 ¯ )[010] slip system, Ag20 S7 Te3 shows better ductility than Ag2 S, yielding excellent shape-conformability. The high carrier mobility and low lattice thermal conductivity observed in Ag20 S7 Te3 result in a maximum dimensionless figure of merit (zT) of 0.80 at 600 K, which is comparable with the best commercial Bi2 Te3 -based alloys. The prototype TEG consisting of 10 Ag20 S7 Te3 strips displays an open-circuit voltage of 69.2 mV and a maximum power output of 17.1 µW under the temperature difference of 70 K. This study creates a new route toward hetero-shaped TEG.

13.
Science ; 369(6503): 542-545, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32732421

RESUMO

Inorganic semiconductors are vital for a number of critical applications but are almost universally brittle. Here, we report the superplastic deformability of indium selenide (InSe). Bulk single-crystalline InSe can be compressed by orders of magnitude and morphed into a Möbius strip or a simple origami at room temperature. The exceptional plasticity of this two-dimensional van der Waals inorganic semiconductor is attributed to the interlayer gliding and cross-layer dislocation slip that are mediated by the long-range In-Se Coulomb interaction across the van der Waals gap and soft intralayer In-Se bonding. We propose a combinatory deformability indicator (Ξ) to prescreen candidate bulk semiconductors for use in next-generation deformable or flexible electronics.

15.
Adv Sci (Weinh) ; 7(1): 1901598, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31921552

RESUMO

Liquid-like materials are one family of promising thermoelectric materials discovered in the past years due to their advantanges of ultrahigh thermoelectric figure of merit (zT), low cost, and environmental friendliness. However, their practial applications are greatly limited by the low service stability from the Cu/Ag metal deposition under large current and/or temperature gradient. Both high zT for high efficiency and large critical voltage for good stability are required for liquid-like materials, but they are usually strongly correlated and hard to be tuned individually. Herein, based on the thermodynamic analysis, it is shown that such a correlation can be decoupled through doping immobile ions into the liquid-like sublattice. Taking Cu2- δ S as an example, doping immobile Fe ions in Cu1.90S scarcely degrades the initial large critical voltage, but significantly enhances the zT to 1.5 at 1000 K by tuning the carrier concentration to the optimal range. Combining the low-cost and environmentally friendly features, these Fe-doped Cu2- δ S-based compounds show great potential in civil applications. This study sheds light on the realization of both good stability and high performance for many other liquid-like thermoelectric materials that have not been considered for real applications before.

16.
ACS Appl Mater Interfaces ; 11(37): 34046-34052, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31454228

RESUMO

As one of the state-of-the-art phase-change materials, the stable Ge2Sb2Te5 hexagonal compound also exhibits decent thermoelectric performance with high electrical conductivity and low thermal conductivity. Nonetheless, the excessively high carrier concentration and low Seebeck coefficient are the bottlenecks to achieve high zT values. In this work, with the intention to optimize the electrical properties, indium was introduced as a potentially donor-like dopant in a series of Ge2-xInxSb2Te5 samples. The substitution of indium for germanium lowers the density of hole carriers and enhances the Seebeck coefficient. Noticeably, the room-temperature Seebeck coefficient of the doped samples can be three times as large as that of the pristine one, which obviously departures from the theoretically predicted Pisarenko relation based on the single parabolic band model. By virtue of DFT calculations and modeling, the remarkable enhancement of Seebeck coefficient was attributed to the doping-induced local distortion in the electronic density of states. Further insight reveals that indium doping amplifies the bonding character of Ge-Te adjacent to indium and enhances the atomic interaction along the c-axis. Due to the optimized electrical properties as well as the suppressed thermal conductivity, a maximal zT value of 0.78 was achieved in Ge1.85In0.15Sb2Te5 at 700 K, which is about 40% higher than that of the pristine sample.

17.
RSC Adv ; 9(14): 7826-7832, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521165

RESUMO

Copper-based chalcogenides have ultralow thermal conductivity and ultrahigh thermoelectric performance, but most of them are p-type semiconductors. It is urgent to develop n-type counterparts for high efficiency thermoelectric modules based on these copper based-chalcogenides. Cu4Sn7S16 is an intrinsically n-type semiconductor with complex crystal structure and low thermal conductivity. However, its thermoelectric properties have not been well studied when compared to the well-known n-type CuFeS2. In this work, high-quality Cu4Sn7S16-based compounds are fabricated and their thermoelectric properties are systematically studied. Using Ag and Sb as dopants, the carrier concentration is tuned over a wide range. The electrical transport properties can be well described by the single parabolic band model with carrier acoustic phonons scattering. It is revealed that Cu4Sn7S16 exhibits a low effective mass and relatively high mobility. The thermal conductivity is lower than 0.8 W m-1 K-1 from 300 to 700 K and shows a weak dependence on temperature. A maximum zT of 0.27 is obtained in Cu3.97Ag0.03Sn7S16 at 700 K. Further enhancement of thermoelectric performance is possible when a more efficient n-type dopant is used.

18.
RSC Adv ; 8(13): 7055-7061, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540339

RESUMO

AgBiSe2 and AgSbSe2, two typical examples of Te-free I-V-VI2 chalcogenides, are drawing much attention due to their promising thermoelectric performance. Both compounds were synthesized via melting and consolidated by spark plasma sintering. The role of annealing on the transport properties of polymorphous AgBiSe2 and monophase AgSbSe2 was studied. Annealing has a greater impact on AgBiSe2 than AgSbSe2, which is ascribed to the temperature dependent phase transition of AgBiSe2. Unannealed AgBiSe2 shows p-n switching, but annealed AgBiSe2 exhibits n-type semiconducting behavior over the whole measurement temperature range. By performing high-temperature Hall measurements, we attribute this intriguing variation to the change in the amount of Ag vacancies and mid-temperature rhombohedral phase after annealing. Both AgBiSe2 and AgSbSe2 exhibit low thermal conductivity values, which are ∼0.40-0.50 W m-1 K-1 for AgSbSe2 and ∼0.45-0.70 W m-1 K-1 for AgBiSe2, respectively. The maximum ZT value of AgBiSe2 is enhanced from 0.18 to 0.21 after annealing. Pristine AgSbSe2 presents a ZT value as high as 0.60 at 623 K, although slight deterioration emerges after annealing.

19.
Adv Sci (Weinh) ; 4(11): 1700199, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29201615

RESUMO

Nanoporous architecture has long been predicted theoretically for its proficiency in suppressing thermal conduction, but less concerned as a practical approach for better thermoelectric materials hitherto probably due to its technical challenges. This article demonstrates a study on nanoporous PbSe-SiO2 composites fabricated by a facile method of mechanical alloying assisted by subsequent wet-milling and then spark plasma sintering. Owing to the formation of random nanopores and additional interface scattering, the lattice thermal conductivity is limited to a value as low as 0.56 W m-1 K-1 at above 600 K, almost the same low level achieved by introducing nanoscale precipitates. Besides, the room-temperature electrical transport is found to be dominated by the grain-boundary potential barrier scattering, whose effect fades away with increasing temperatures. Consequently, a maximum ZT of 1.15 at 823 K is achieved in the PbSe + 0.7 vol% SiO2 composition with >20% increase in average ZT, indicating the great potential of nanoporous structuring toward high thermoelectric conversion efficiency.

20.
Sci Rep ; 7: 43262, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240324

RESUMO

P-type SnS compound and SnS1-xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS1-xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m-1 K-1 at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...