Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(20): e2211632, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36868183

RESUMO

Molecular fluorophores with the second near-infrared (NIR-II) emission hold great potential for deep-tissue bioimaging owing to their excellent biocompatibility and high resolution. Recently, J-aggregates are used to construct long-wavelength NIR-II emitters as their optical bands show remarkable red shifts upon forming water-dispersible nano-aggregates. However, their wide applications in the NIR-II fluorescence imaging are impeded by the limited varieties of J-type backbone and serious fluorescence quenching. Herein, a bright benzo[c]thiophene (BT) J-aggregate fluorophore (BT6) with anti-quenching effect is reported for highly efficient NIR-II bioimaging and phototheranostics. The BT fluorophores are manipulated to have Stokes shift over 400 nm and aggregation-induced emission (AIE) property for conquering the self-quenching issue of the J-type fluorophores. Upon forming BT6 assemblies in an aqueous environment, the absorption over 800 nm and NIR-II emission over 1000 nm are boosted for more than 41 and 26 folds, respectively. In vivo visualization of the whole-body blood vessel and imaging-guided phototherapy results verify that BT6 NPs are excellent agent for NIR-II fluorescence imaging and cancer phototheranostics. This work develops a strategy to construct bright NIR-II J-aggregates with precisely manipulated anti-quenching properties for highly efficient biomedical applications.


Assuntos
Nanopartículas , Neoplasias , Humanos , Corantes Fluorescentes/farmacologia , Fototerapia , Imagem Óptica/métodos
2.
Nanoscale ; 13(17): 8012-8016, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33884397

RESUMO

While photodynamic therapy (PDT) of cancer has attracted much recent attention, its general applications are limited by the shallow tissue penetration depth of short-wavelength photons and the low oxygen contents in typical solid tumors. Herein, we develop small molecule (BthB)-based nanoparticles (NPs) which not only generate heat for effective photothermal therapy (PTT), but also generate superoxide radicals (O2˙-) for hypoxia-overcoming photodynamic therapy (PDT) upon irradiation with an 808 nm laser. To the best of our knowledge, there are few reports of organic PDT agents which can work in hypoxia upon irradiation with photons having wavelengths longer than 800 nm. With the merits of NIR-excitability for better penetration depth, the BthB NPs are demonstrated both in vitro and in vivo to be highly effective for cancer ablation.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Hipóxia , Nanomedicina , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio Singlete , Superóxidos
3.
ACS Nano ; 14(8): 9917-9928, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32706236

RESUMO

Effective multimodality phototheranostics under deep-penetration laser excitation is highly desired for tumor medicine, which is still at a deadlock due to lack of versatile photosensitizers with absorption located in the long-wavelength region. Herein, we demonstrate a stable organic photosensitizer nanoparticle based on molecular engineering of benzo[c]thiophene (BT)-based photoactivated molecules with strong wavelength-tunable absorption in the near-infrared region. Via molecular design, the absorption and singlet oxygen generation of BT molecules would be reliably tuned. Importantly, the nanoparticles with a red-shifted absorption peak of 843 nm not only show over 10-fold reactive oxygen species yield compared with indocyanine green but also demonstrate a notable photothermal effect and photoacoustic signal upon 808 nm excitation. The in vitro and in vivo experiments substantiate good multimodal anticancer efficacy and imaging performance of BT theranostics. This work provides an organic photosensitizer nanoparticle with long-wavelength excitation and high photoenergy conversion efficiency for multimodality phototherapy.


Assuntos
Nanopartículas , Fármacos Fotossensibilizantes , Fototerapia , Espécies Reativas de Oxigênio , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...