Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 9(11)2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28773981

RESUMO

Homogeneous Bi2O3-V2O5 powder mixtures with different amounts of V2O5 content (≤15 mol%) were prepared by colloidal dispersion and sintering to high density. The sintered and annealed samples were studied by thermal analysis, quantitative X-ray diffraction and scanning electron microscopy. The electrical and ionic conductivities of the conductors were also measured by a four-probe direct current (DC) method. The results of the samples prepared at 600-800 °C and annealed for as long as 100 h show that the sintered samples consisting of a pure γ phase or δ + γ binary phase perform differently in conductivity. The highly conductive δ phase in the composition of Bi0.92V0.08O1.5-δ enhances the electric conductivity 10-times better than that of the pure γ-sample (Bi0.94V0.06O1.5-δ) between 400 and 600 °C. The compatible regions of the γ phase with the α- or δ phase are also reported and discussed, so a part of the previously published Bi2O3-V2O5 phase diagram below 800 °C is revised.

2.
Materials (Basel) ; 9(11)2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28774043

RESUMO

(Bi,Sr)FeO3-δ (BSF) cathode materials doped with either Co, Ni or Mn are synthesized by an ethylene diamine tetra-acetic acid (EDTA)-citrate complexing method, and the effects of the doping level on the mixed electronic-ionic conductivity at various temperatures are studied up to 800 °C. The phase purity and solid solution limit are investigated by X-ray diffraction (XRD). The ionic conductivity is measured by the four-probe direct current (DC) method, the valence state of Fe and Mn by X-ray photoelectron spectroscopy (XPS), and the oxygen non-stoichiometry by differential thermo-gravimetric analysis (TGA). The doped ferrites show interesting electronic conductivity dependent on the testing temperature, implying two conductive mechanisms, either controlled by double exchange at lower temperatures or small polaron (electron-oxygen vacancy) conduction at temperatures greater than 400 °C. The results of Co-doped BSF (S50C20) show the best mixed conductivity among the ferrites, and this is used to assemble cells. The cell with a S50C20 cathode in the region of 600-800 °C is improved by 15% in maximum power density greater than the cell with La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) due to the balanced contribution from oxygen ions, vacancies and electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...