Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39173637

RESUMO

NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.

2.
Angew Chem Int Ed Engl ; : e202415168, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150898

RESUMO

Deubiquitinase-targeting chimera (DUBTAC) is a promising technology for inducing targeted protein stabilization (TPS). Despite its therapeutic potential, very few proteins have been stabilized by DUBTACs to date. The limited applicability of this technology is likely due to the modest DUBTAC-induced protein stabilization effect, and the scarcity of effective deubiquitinase ligands that can be harnessed for DUBTAC development. Here, we report the discovery of MS7829 and MS8588, the first-in-class DUBTACs of cGAS, a key component of the cGAS-STING pathway. While these DUBTACs are based on a cGAS inhibitor, they effectively stabilized cGAS and activated the cGAS/STING/IRF3 signaling. To develop these cGAS DUBTACs, we optimized EN523, an OTUB1 covalent ligand, into an improved ligand, MS5105. We validated MS5105 by generating a MS5105-based CFTR DUBTAC, which was approximately 10-fold more effective in stabilizing the ΔF508-CFTR mutant protein than the previously reported EN523-based CFTR DUBTAC. Overall, this work advances the DUBTAC technology for TPS.

3.
Semin Cancer Biol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39153724

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is indispensable for preserving cellular and organismal homeostasis by balancing the anabolic and catabolic processes in response to various environmental cues, such as nutrients, growth factors, energy status, oxygen levels, and stress. Dysregulation of mTORC1 signaling is associated with the progression of many types of human disorders including cancer, age-related diseases, neurodegenerative disorders, and metabolic diseases. The way mTORC1 senses various upstream signals and converts them into specific downstream responses remains a crucial question with significant impacts for our perception of the related physiological and pathological process. In this review, we discuss the recent molecular and functional insights into the nutrient sensing of the mTORC1 signaling pathway, along with the emerging role of deregulating nutrient-mTORC1 signaling in cancer and age-related disorders.

4.
Biology (Basel) ; 13(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39056676

RESUMO

Triple-negative breast cancer (TNBC) cells are often resistant to FAS (CD95)-mediated apoptosis, but the underlying molecular mechanism(s) is not fully understood yet. Notably, the expression of the type II transmembrane protein, CD74, is correlated with chemotherapy-resistant and more invasive forms of cancers via unknown mechanisms. Here, we analyzed gene expression pattern of cancer patients and/or patient-derived xenograft (PDX) models and found that mRNA and protein levels of CD74 are highly expressed in TNBC and correlated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) properties. Mechanistically, we found that AKT activation is likely critical for maintaining CD74 expression and protein stability to favor its oncogenic functions. Physiologically, epidermal growth factor (EGF) along with CD74 could activate AKT signaling, likely through binding of phosphorylated AKT (S473) to CD74, whereas inhibition of AKT could impair stability of CD74. We also revealed that CD74 binds to FAS and interferes with the intrinsic signaling of FAS-mediated apoptosis. As such, selective targeting of the CD74/FAS complex using the AKT inhibitor along with the CD74-derived peptide could synergistically restore and activate FAS-mediated apoptosis. Therefore, our approach of mobilizing apoptosis pathways likely provides a rationale for TNBC treatment by targeting the CD74/FAS and CD74-AKT axes.

5.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189140, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909632

RESUMO

FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.

6.
Autophagy ; : 1-16, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38726865

RESUMO

AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.

7.
Nat Commun ; 15(1): 3220, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622115

RESUMO

Induced oncoproteins degradation provides an attractive anti-cancer modality. Activation of anaphase-promoting complex (APC/CCDH1) prevents cell-cycle entry by targeting crucial mitotic proteins for degradation. Phosphorylation of its co-activator CDH1 modulates the E3 ligase activity, but little is known about its regulation after phosphorylation and how to effectively harness APC/CCDH1 activity to treat cancer. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1)-catalyzed phosphorylation-dependent cis-trans prolyl isomerization drives tumor malignancy. However, the mechanisms controlling its protein turnover remain elusive. Through proteomic screens and structural characterizations, we identify a reciprocal antagonism of PIN1-APC/CCDH1 mediated by domain-oriented phosphorylation-dependent dual interactions as a fundamental mechanism governing mitotic protein stability and cell-cycle entry. Remarkably, combined PIN1 and cyclin-dependent protein kinases (CDKs) inhibition creates a positive feedback loop of PIN1 inhibition and APC/CCDH1 activation to irreversibly degrade PIN1 and other crucial mitotic proteins, which force permanent cell-cycle exit and trigger anti-tumor immunity, translating into synergistic efficacy against triple-negative breast cancer.


Assuntos
Proteínas de Ciclo Celular , Proteômica , Ciclo Celular/fisiologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação , Estabilidade Proteica , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Mitose
8.
J Am Chem Soc ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597345

RESUMO

Deubiquitinase-targeting chimeras (DUBTACs) have been recently developed to stabilize proteins of interest, which is in contrast to targeted protein degradation (TPD) approaches that degrade disease-causing proteins. However, to date, only the OTUB1 deubiquitinase has been utilized to develop DUBTACs via an OTUB1 covalent ligand, which could unexpectedly compromise the endogenous function of OTUB1 owing to its covalent nature. Here, we show for the first time that deubiquitinase USP7 can be harnessed for DUBTAC development. Based on a noncovalent ligand of USP7, we developed USP7-based DUBTACs that stabilized the ΔF508-CFTR mutant protein as effectively as the previously reported OTUB1-based DUBTAC. Importantly, using two different noncovalent ligands of USP7, we developed the first AMPK DUBTACs that appear to selectively stabilize different isoforms of AMPKß, leading to elevated AMPK signaling. Overall, these results highlight that, in addition to OTUB1, USP7 can be leveraged to develop DUBTACs, thus significantly expanding the limited toolbox for targeted protein stabilization and the development of novel AMPK DUBTACs as potential therapeutics.

9.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617310

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes. However, the biological relationships between the identified COPD susceptibility genes are largely unknown. Genes associated with a complex disease are often in close network proximity, i.e. their protein products often interact directly with each other and/or similar proteins. In this study, we use affinity purification mass spectrometry (AP-MS) to identify protein interactions with HHIP , a well-established COPD GWAS gene which is part of the sonic hedgehog pathway, in two disease-relevant lung cell lines (IMR90 and 16HBE). To better understand the network neighborhood of HHIP , its proximity to the protein products of other COPD GWAS genes, and its functional role in COPD pathogenesis, we create HUBRIS, a protein-protein interaction network compiled from 8 publicly available databases. We identified both common and cell type-specific protein-protein interactors of HHIP. We find that our newly identified interactions shorten the network distance between HHIP and the protein products of several COPD GWAS genes, including DSP, MFAP2, TET2 , and FBLN5 . These new shorter paths include proteins that are encoded by genes involved in extracellular matrix and tissue organization. We found and validated interactions to proteins that provide new insights into COPD pathobiology, including CAVIN1 (IMR90) and TP53 (16HBE). The newly discovered HHIP interactions with CAVIN1 and TP53 implicate HHIP in response to oxidative stress.

10.
J Am Chem Soc ; 146(11): 7584-7593, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469801

RESUMO

Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.


Assuntos
DNA Forma Z , Quimera de Direcionamento de Proteólise , Proteólise , Adenosina Desaminase/metabolismo , RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo
11.
Sci Immunol ; 9(94): eadn1452, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38530158

RESUMO

Plasma membrane perforation elicited by caspase cleavage of the gasdermin D (GSDMD) N-terminal domain (GSDMD-NT) triggers pyroptosis. The mechanisms underlying GSDMD membrane translocation and pore formation are not fully understood. Here, using a proteomic approach, we identified fatty acid synthase (FASN) as a GSDMD-binding partner. S-palmitoylation of GSDMD at Cys191/Cys192 (human/mouse), catalyzed by palmitoyl acyltransferases ZDHHC5 and ZDHHC9 and facilitated by reactive oxygen species (ROS), directly mediated membrane translocation of GSDMD-NT but not full-length GSDMD (GSDMD-FL). Palmitoylation of GSDMD-FL could be induced before inflammasome activation by stimuli such as lipopolysaccharide (LPS), consequently serving as an essential molecular event in macrophage priming. Inhibition of GSDMD palmitoylation suppressed macrophage pyroptosis and IL-1ß release, mitigated organ damage, and enhanced the survival of septic mice. Thus, GSDMD-NT palmitoylation is a key regulatory mechanism controlling GSDMD membrane localization and activation, which may offer an additional target for modulating immune activity in infectious and inflammatory diseases.


Assuntos
Piroptose , Animais , Humanos , Camundongos , Gasderminas , Lipoilação , Proteômica
12.
Nat Commun ; 15(1): 1871, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424044

RESUMO

CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.


Assuntos
Neoplasias da Mama , Proteínas Inibidoras de Quinase Dependente de Ciclina , Humanos , Masculino , Pelve , Regiões Promotoras Genéticas , Próstata , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Inibidores de Proteínas Quinases
13.
EBioMedicine ; 101: 105026, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417378

RESUMO

BACKGROUND: An intergenic region at chromosome 4q31 is one of the most significant regions associated with COPD susceptibility and lung function in GWAS. In this region, the implicated causal gene HHIP has a unique epithelial expression pattern in adult human lungs, in contrast to dominant expression in fibroblasts in murine lungs. However, the mechanism underlying the species-dependent cell type-specific regulation of HHIP remains largely unknown. METHODS: We employed snATAC-seq analysis to identify open chromatin regions within the COPD GWAS region in various human lung cell types. ChIP-quantitative PCR, reporter assays, chromatin conformation capture assays and Hi-C assays were conducted to characterize the regulatory element in this region. CRISPR/Cas9-editing was performed in BEAS-2B cells to generate single colonies with stable knockout of the regulatory element. RT-PCR and Western blot assays were used to evaluate expression of HHIP and epithelial-mesenchymal transition (EMT)-related marker genes. FINDINGS: We identified a distal enhancer within the COPD 4q31 GWAS locus that regulates HHIP transcription at baseline and after TGFß treatment in a SMAD3-dependent, but Hedgehog-independent manner in human bronchial epithelial cells. The distal enhancer also maintains chromatin topological domains near 4q31 locus and HHIP gene. Reduced HHIP expression led to increased EMT induced by TGFß in human bronchial epithelial cells. INTERPRETATION: A distal enhancer regulates HHIP expression both under homeostatic condition and upon TGFß treatment in human bronchial epithelial cells. The interaction between HHIP and TGFß signalling possibly contributes to COPD pathogenesis. FUNDING: Supported by NIH grants R01HL127200, R01HL148667 and R01HL162783 (to X. Z).


Assuntos
Proteínas Hedgehog , Doença Pulmonar Obstrutiva Crônica , Adulto , Humanos , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Células Epiteliais/metabolismo , Cromatina/genética , Cromatina/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Gut ; 73(7): 1156-1168, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38191266

RESUMO

OBJECTIVE: Whether and how the PI3K-AKT pathway, a central node of metabolic homeostasis, is responsible for high-fat-induced non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remain a mystery. Characterisation of AKT regulation in this setting will provide new strategies to combat HCC. DESIGN: Metabolite library screening disclosed that palmitic acid (PA) could activate AKT. In vivo and in vitro palmitoylation assay were employed to detect AKT palmitoylation. Diverse cell and mouse models, including generation of AKT1C77S and AKT1C224S knock-in cells, Zdhhc17 and Zdhhc24 knockout mice and Akt1C224S knock-in mice were employed. Human liver tissues from patients with NASH and HCC, hydrodynamic transfection mouse model, high-fat/high-cholesterol diet (HFHCD)-induced NASH/HCC mouse model and high-fat and methionine/choline-deficient diet (HFMCD)-induced NASH mouse model were also further explored for our mechanism studies. RESULTS: By screening a metabolite library, PA has been defined to activate AKT by promoting its palmitoyl modification, an essential step for growth factor-induced AKT activation. Biologically, a high-fat diet could promote AKT kinase activity, thereby promoting NASH and liver cancer. Mechanistically, palmitoyl binding anchors AKT to the cell membrane in a PIP3-independent manner, in part by preventing AKT from assembling into an inactive polymer. The palmitoyltransferases ZDHHC17/24 were characterised to palmitoylate AKT to exert oncogenic effects. Interestingly, the anti-obesity drug orlistat or specific penetrating peptides can effectively attenuate AKT palmitoylation and activation by restricting PA synthesis or repressing AKT modification, respectively, thereby antagonising liver tumorigenesis. CONCLUSIONS: Our findings elucidate a novel fine-tuned regulation of AKT by PA-ZDHHC17/24-mediated palmitoylation, and highlight tumour therapeutic strategies by taking PA-restricted diets, limiting PA synthesis, or directly targeting AKT palmitoylation.


Assuntos
Carcinoma Hepatocelular , Dieta Hiperlipídica , Lipoilação , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Proteínas Proto-Oncogênicas c-akt , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Humanos , Ácido Palmítico/metabolismo , Carcinogênese/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Masculino , Transdução de Sinais
16.
Aging (Albany NY) ; 15(24): 15161-15182, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38154101

RESUMO

BACKGROUND: Cerebral ischemic stroke (CIS) is a common cerebrovascular disease. The purpose of this study was to investigate the potential mechanism of hypoxia and immune-related genes in CIS. METHODS: All data were downloaded from public databases. Hub mRNAs was identified by differential expression analysis, WGCNA analysis and machine learning. Hub mRNAs were used to construct the classification models. Pearson correlation analysis was used to analyze the correlation between hub mRNAs and immune cell infiltration. Finally, the SAP30 was selected for verification in HMC3 cells. RESULTS: The SVM, RF and DT classification models constructed based on 6 hub mRNAs had higher area under the curve values, which implied that these classification models had high diagnostic accuracy. Pearson correlation analysis found that Macrophage has the highest negative correlation with CCR7, while Neutrophil has the highest positive correlation with SLC2A3. Drug prediction found that ruxolitinib, methotrexate, resveratrol and resatorvid may play a role in disease treatment by targeting different hub mRNAs. Notably, inhibition of SAP30 expression can reduce the apoptosis of HMC3 cells and inhibit the production of ROS and MDA. CONCLUSION: The identification of hub miRNAs and the construction of classification diagnosis models provide a theoretical basis for the diagnosis and management of CIS.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Apoptose/genética , Histona Desacetilases , Hipóxia , AVC Isquêmico/diagnóstico , AVC Isquêmico/genética , Espécies Reativas de Oxigênio , Acidente Vascular Cerebral/genética , Malondialdeído/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA