Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38733352

RESUMO

Among various anode materials, SiOx is regarded as the next generation of promising anode due to its advantages of high theoretical capacity with 2680 mA h g-1, low lithium voltage platform, and rich natural resources. However, the pure SiOx-based materials have slow lithium storage kinetics attributed to their low electron/ion conductive properties and the large volume change during lithiation/delithiation, restricting their practical application. Optimizing the SiOx material structures and the fabricating methods to mitigate these fatal defects and adapt to the market demand for energy density is critical. Hence, SiOx material with TiO1-xNx phase modification has been prepared by simple, low-cost, and scalable ball milling and then combined with nitridation. Consequently, based on the TiO1-xNx modified layer, which boosts high ionic/electronic conductivity, chemical stability, and excellent mechanical properties, the SiOx@TON-10 electrode shows highly stable lithium-ion storage performance for lithium-ion half/full batteries due to a stable solid-electrolyte interface layer, fast Li+ transport channel, and alleviative volumetric expansion, further verifying its practical feasibility and universal applicability.

2.
J Colloid Interface Sci ; 666: 371-379, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603879

RESUMO

VO2 (B) is recognized as a promising cathode material for aqueous zinc metal batteries (AZMBs) owing to its remarkable specific capacity and its unique, expansive tunnel structure, which facilitates the reversible insertion and extraction of Zn2+. Nonetheless, challenges such as the inherent instability of the VO2 structure, poor ion/electron transport and a limited capacity due to the low redox potential of the V3+/V4+ couple have hindered its wider application. In this study, we present a strategy to replace vanadium ions by doping Al3+ in VO2. This approach activates the multi-electron reaction (V4+/V5+), to increase the specific capacity and improve the structural stability by forming robust V5+O and Al3+O bonds. It also induces a local electric field by altering the local electron arrangement, which significantly accelerates the ion/electron transport process. As a result, Al-doped VO2 exhibits superior specific capacity, improved cycling stability, and accelerated electronic transport kinetics compared to undoped VO2. The beneficial effects of heterogeneous atomic doping observed here may provide valuable insights into the improvement electrode materials in metal-ion battery systems other than those based on Zn.

3.
Materials (Basel) ; 17(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38541432

RESUMO

Manganese-based layered oxides are promising cathode materials for potassium-ion batteries (PIBs) due to their low cost and high theoretical energy density. However, the Jahn-Teller effect of Mn3+ and sluggish diffusion kinetics lead to rapid electrode deterioration and a poor rate performance, greatly limiting their practical application. Here, we report a Co/Al co-substitution strategy to construct a P3-type K0.45Mn0.7Co0.2Al0.1O2 cathode material, where Co3+ and Al3+ ions occupy Mn3+ sites. This effectively suppresses the Jahn-Teller distortion and alleviates the severe phase transition during K+ intercalation/de-intercalation processes. In addition, the Co element contributes to K+ diffusion, while Al stabilizes the layer structure through strong Al-O bonds. As a result, the K0.45Mn0.7Co0.2Al0.1O2 cathode exhibits high capacities of 111 mAh g-1 and 81 mAh g-1 at 0.05 A g-1 and 1 A g-1, respectively. It also demonstrates a capacity retention of 71.6% after 500 cycles at 1 A g-1. Compared to the pristine K0.45MnO2, the K0.45Mn0.7Co0.2Al0.1O2 significantly alleviates severe phase transition, providing a more stable and effective pathway for K+ transport, as investigated by in situ X-ray diffraction. The synergistic effect of Co/Al co-substitution significantly enhances the structural stability and electrochemical performance, contributing to the development of new Mn-based cathode materials for PIBs.

4.
Small ; : e2312091, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308418

RESUMO

Grafted biopolymer binders are demonstrated to improve the processability and cycling stability of the silicon (Si) nanoparticle anodes. However, there is little systematical exploration regarding the relationship between grafting density and performance of grafted binder for Si anodes, especially when Si particles exceed the critical breaking size. Herein, a series of guar gum grafted polyacrylamide (GP) binders with different grafting densities are designed and prepared to determine the optimal grafting density for maximizing the electrochemical performance of Si submicroparticle (SiSMP) anodes. Among various GP binders, GP5 with recommended grafting density demonstrates the strongest adhesion strength, best mechanical properties, and highest intrinsic ionic conductivity. These characteristics enable the SiSMP electrodes to sustain the electrode integrity and accelerate lithium-ion transport kinetics during cycling, resulting in high capacity and stable cyclability. The superior role of GP5 binder in enabling robust structure and stable interface of SiSMP electrodes is revealed through the PeakForce atomic force microscopy and in situ differential electrochemical mass spectrometry. Furthermore, the stable cyclabilities of high-loading SiSMP@GP5 electrode with ultralow GP5 content (1 wt%) at high areal capacity as well as the good cyclability of Ah-level LiNi0.8 Co0.1 Mn0.1 O2 /SiSMP@GP5 pouch cell strongly confirms the practical viability of the GP5 binder.

5.
Gels ; 9(8)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37623128

RESUMO

In this paper, sodium alginate (NaAlg) was used as functional monomers, bovine serum albumin (BSA) was used as template molecules, and calcium chloride (CaCl2) aqueous solution was used as a cross-linking agent to prepare BSA molecularly imprinted carboxylated multi-wall carbon nanotubes (CMWCNT)/CaAlg hydrogel films (MIPs) and non-imprinted hydrogel films (NIPs). The adsorption capacity of the MIP film for BSA was 27.23 mg/g and the imprinting efficiency was 2.73. The MIP and NIP hydrogel film were loaded on the surface of the printed electrode, and electrochemical performance tests were carried out by electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) using the electrochemical workstation. The loaded MIP film and NIP film effectively improved the electrochemical signal of the bare carbon electrode. When the pH value of the Tris HCl elution solution was 7.4, the elution time was 15 min and the adsorption time was 15 min, and the peak currents of MIP-modified electrodes and NIP-modified electrodes reached their maximum values. There was a specific interaction between MIP-modified electrodes and BSA, exhibiting specific recognition for BSA. In addition, the MIP-modified electrodes had good anti-interference, reusability, stability, and reproducibility. The detection limit (LOD) was 5.6 × 10-6 mg mL-1.

6.
Asian J Surg ; 46(11): 5202-5203, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37537048
7.
ACS Appl Mater Interfaces ; 14(51): 56910-56918, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36515974

RESUMO

The large volume expansion hinders the commercial application of silicon oxide (SiOx) anodes in lithium-ion batteries. Recent studies show that binders play a vital role in mitigating the volume change of SiOx electrodes. Herein, we introduce the small molecule tannic acid (TA) with high branching into the linear poly(acrylic acid) (PAA) binder for SiOx anodes. The three-dimensional (3D) crosslinked network with multiple hydrogen bonds is formed by the incorporation of abundant hydroxyl groups with unique carboxyl groups, which increases the interfacial adhesive strength with SiOx particles. As a consequence, SiOx electrodes based on the PAA-TA binder show an excellent cycling performance with a high specific capacity of 1025 mA h g-1 at 500 mA g-1 after 250 cycles. Moreover, the SiOx||NCM811 full cell exhibits a reversible capacity of 143 mA h g-1 corresponding to 87.4% capacity retention after 100 cycles.

8.
Artigo em Inglês | MEDLINE | ID: mdl-36314536

RESUMO

Micron-sized silicon oxide (SiOx) has been regarded as a promising anode material for new-generation lithium-ion batteries due to its high capacity and low cost. However, the distinct volume expansion during the repeated (de)lithiation process and poor conductivity can lead to structural collapse of the electrode and capacity fading. In this study, SiOx anode materials coated with TiO0.6N0.4 layers are fabricated by a facile solvothermal and thermal reduction technique. The TiO0.6N0.4 layers are homogeneously dispersed on SiOx particles and form an intimate contact. The TiO0.6N0.4 layers can enhance the conductivity and suppress volume expansion of the SiOx anode, which facilitate ion/electron transport and maintain the integrity of the overall electrode structure. The as-prepared SiOx-TiON-200 composites demonstrate a high reversible capacity of 854 mAh g-1 at 0.5 A g-1 with a mass loading of 2.0 mg cm-2 after 250 cycles. This surface modification technique could be extended to other anodes with low conductivity and large volume expansion for lithium-ion batteries.

9.
ACS Appl Mater Interfaces ; 14(16): 18625-18633, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417145

RESUMO

Silicon oxide (SiOx) has outstanding capacity and stable lithium-ion uptake/removal electrochemistry as a lithium-ion anode material; however, its practical massive commercialization is encumbered by unavoidable challenges, such as dynamic volume changes during cycling and inherently inferior ionic conductivities. Recent literature has offered a consensus that binders play a critical role in affecting the electrochemical performance of Si-based electrodes. Herein, we report an aqueous binder, γ-polyglutamic acid cross-linked by epichlorohydrin (PGA-ECH), that guarantees enhanced properties for SiOx anodes to implement long-term cycling stability. The abundant amide, carboxyl, and hydroxyl groups in the binder structure form strong interactions with the SiOx surface, which contribute strong interfacial adhesion. The robust covalent interactions and strong supramolecular interactions in the binder ensure mechanical strength and elasticity. Additionally, the interactions between lithium ions and oxygen (nitrogen) atoms of carboxylate (peptide) bonds, which serve as a Lewis base, facilitate the diffusion of lithium ions. A SiOx anode using this PGA-ECH binder exhibits an impressive initial discharge capacity of 1962 mA h g-1 and maintains a high capacity of 900 mA h g-1 after 500 cycles at 500 mA g-1. Meanwhile, the assembled SiOx||LiNi0.6Co0.2MnO0.2 full cell shows a reversible capacity of 155 mA g-1 and displays 73% capacity retention after 100 cycles.

10.
Comb Chem High Throughput Screen ; 25(10): 1756-1766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34455960

RESUMO

BACKGROUND: Musa basjoo pseudostem juice (MBSJ) is a well-known Chinese medicine, and Miao people use MBSJ to treat diabetes. In this work, the active ingredients and molecular mechanism of MBSJ against diabetes were explored. METHODS: Anti-diabetic activity of MBSJ was evaluated using diabetic rats, and then the ingredients in the small-polar parts of MBSJ were analyzed by gas chromatography-mass spectrometer (GC-MS). Targets were obtained from several databases to develop the "ingredienttarget- disease" network by Cytoscape. A collaborative analysis was carried out using the tools in Cytoscape and R packages, and molecular docking was also performed. RESULTS: MBSJ improved the oral glucose tolerance and insulin tolerance, and reduced fasting blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, and low-density lipoprotein levels in the serum of diabetic rats. 13 potential compounds were identified by GC-MS for subsequent analysis, including Dibutyl phthalate, Oleamide, Stigmasterol, Stigmast-4-en-3-one, etc. The anti-diabetic effect of MBSJ was related to multiple signaling pathways, including Neuroactive ligand-receptor interaction, Phospholipase D signaling pathway, Endocrine resistance, Rap1 signaling pathway, EGFR tyrosine kinase inhibitor resistance, etc. Molecular docking at least partially verified the screening results of network pharmacology. CONCLUSION: MBSJ had good anti-diabetic activity. The small-polar parts of MBSJ were rich in anti-diabetic active ingredients. Furthermore, the analysis results showed that the anti-diabetic effect of the small-polar parts of MBSJ may be the result of multiple components, multiple targets, and multiple pathways. The current research results can provide important support for studying the active ingredients and exploring the underlying mechanism of MBSJ against diabetes.


Assuntos
Experimentação Animal , Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Musa , Animais , Cromatografia Gasosa , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Ratos
11.
ACS Appl Mater Interfaces ; 13(46): 55092-55101, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762400

RESUMO

A lithium-sulfur (Li-S) battery based on multielectron chemical reactions is considered as a next-generation energy-storage device because of its ultrahigh energy density. However, practical application of a Li-S battery is limited by the large volume changes, insufficient ion conductivity, and undesired shuttle effect of its sulfur cathode. To address these issues, an aqueous supramolecular binder with multifunctions is developed by cross-linking sericin protein (SP) and phytic acid (PA). The combination of SP and PA allows one to control the volume change of the sulfur cathode, benefit soluble polysulfides absorbing, and facilitate transportation of Li+. Attributed to the above merits, a Li-S battery with the SP-PA binder exhibits a remarkable cycle performance improvement of 200% and 120% after 100 cycles at 0.2 C compared with Li-S batteries with PVDF and SP binders. In particular, the SP-PA binder in the electrode displays admirable flame-retardant performance due to formation of an isolating layer and the release of radicals.

12.
J Genet Genomics ; 48(8): 727-736, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34334354

RESUMO

Mitochondrial diseases are caused by variants in both mitochondrial and nuclear genomes. A nuclear gene HPDL (4-hydroxyphenylpyruvate dioxygenase-like), which encodes an intermembrane mitochondrial protein, has been recently implicated in causing a neurodegenerative disease characterized by pediatric-onset spastic movement phenotypes. Here, we report six Chinese patients with bi-allelic HPDL pathogenic variants from four unrelated families showing neuropathic symptoms of variable severity, including developmental delay/intellectual disability, spasm, and hypertonia. Seven different pathogenic variants are identified, of which five are novel. Both fibroblasts and immortalized lymphocytes derived from patients show impaired mitochondrial respiratory function, which is also observed in HPDL-knockdown (KD) HeLa cells. In these HeLa cells, overexpression of a wild-type HPDL gene can rescue the respiratory phenotype of oxygen consumption rate. In addition, a decreased activity of the oxidative phosphorylation (OXPHOS) complex II is observed in patient-derived lymphocytes and HPDL-KD HeLa cells, further supporting an essential role of HPDL in the mitochondrial respiratory chain. Collectively, our data expand the clinical and mutational spectra of this mitochondrial neuropathy and further delineate the possible disease mechanism involving the impairment of the OXPHOS complex II activity due to the bi-allelic inactivations of HPDL.


Assuntos
Doenças Neurodegenerativas
13.
ACS Appl Mater Interfaces ; 13(28): 33066-33074, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34251170

RESUMO

Conventional polymer binder in a lithium-sulfur (Li-S) battery, poly(vinylidene fluoride) (PVDF), suffers from insufficient ion conductivity, poor polysulfide-trapping ability, weak mechanical property, and requirement of organic solvents, which significantly encumber the industrial application of Li-S battery. Herein, a water-soluble binder with trifunctions, covalently cross-linked quaternary ammonium cationic starch (c-QACS), is developed to confront these issues. Similar to the poly(ethylene oxide) solid electrolytes, the c-QACS binder remarkably improves Li+ ion transfer capacity. The abundant O actives endow the c-QACS binder with admirable lithium polysulfide-trapping capability to retard the shuttle effect. In addition, the formed 3D network effectively maintains the electrode integrity during cycling. Benefiting from the above merits, the sulfur cathode with the c-QACS binder demonstrates a performance improvement of 300 and 150% compared with sulfur cathode with PVDF and bulk QACS binder after 100 cycles at 0.2C.

14.
Clin Chem Lab Med ; 58(11): 1809-1817, 2020 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432562

RESUMO

Objectives Leigh syndrome (LS) is one of the most common mitochondrial diseases and has variable clinical symptoms. However, the genetic variant spectrum of this disease is incomplete. Methods Next-generation sequencing (NGS) was used to identify the m.14430A > G (p.W82R) variant in a patient with LS. The pathogenesis of this novel complex I (CI) variant was verified by determining the mitochondrial respiration, assembly of CI, ATP, MMP and lactate production, and cell growth rate in cybrids with and without this variant. Results A novel m.14430A > G (p.W82R) variant in the NADH dehydrogenase 6 (ND6) gene was identified in the patient; the mutant loads of m.14430A > G (p.W82R) in the patient were much higher than those in his mother. Although the transmitochondrial cybrid-based study showed that mitochondrial CI assembly remains unaffected in cells with the m.14430G variant, control cells had significantly higher endogenous and CI-dependent mitochondrial respiration than mutant cells. Accordingly, mutant cells had a lower ATP, MMP and higher extracellular lactate production than control cells. Notably, mutant cells had impaired growth in a galactose-containing medium when compared to wild-type cells. Conclusions A novel m.14430A > G (p.W82R) variant in the ND6 gene was identified from a patient suspected to have LS, and this variant impaired mitochondrial respiration by decreasing the activity of mitochondrial CI.


Assuntos
Doença de Leigh/genética , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Linhagem Celular Tumoral , Pré-Escolar , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Leigh/enzimologia , Masculino , Mutação de Sentido Incorreto
15.
Mol Genet Genomic Med ; 8(5): e1199, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32162843

RESUMO

BACKGROUND: The m.14487T>C mutation is recognized as a diagnostic mutation of mitochondrial disease during the past 16 years, emerging evidence suggests that mutant loads of m.14487T>C and disease phenotype are not closely correlated. METHODS: Immortalized lymphocytes were generated by coculturing the Epstein-Barr virus and lymphocytes from m.14487T>C carrier Chinese patient with Leigh syndrome. Fifteen cytoplasmic hybrid (cybrid) cell lines were generated by fusing mtDNA lacking 143B cells with platelets donated by patients. Mitochondrial function was systematically analyzed at transcriptomic, metabolomic, and biochemical levels. RESULTS: Unlike previous reports, we found that the assembly of mitochondrial respiratory chain complexes, mitochondrial respiration, and mitochondrial OXPHOS function was barely affected in cybrid cells carrying homoplastic m.14487T>C mutation. Mitochondrial dysfunction associated transcriptomic and metabolomic reprogramming were not detected in cybrid carrying homoplastic m.14487T>C. However, we found that mitochondrial function was impaired in patient-derived immortalized lymphocytes. CONCLUSION: Our data revealed that m.14487T>C mutation is insufficient to cause mitochondrial deficiency; additional modifier genes may be involved in m.14487T>C-associated mitochondrial disease. Our results further demonstrated that a caution should be taken by solely use of m.14487T>C mutation for molecular diagnosis of mitochondrial disease.


Assuntos
Doença de Leigh/genética , NADH Desidrogenase/genética , Mutação Puntual , Células Cultivadas , Feminino , Humanos , Doença de Leigh/metabolismo , Linfócitos/metabolismo , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Fosforilação Oxidativa
16.
J Hum Genet ; 65(3): 231-240, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31907385

RESUMO

TOM70 is a member of the TOM complex that transports cytosolic proteins into mitochondria. Here, we identified two compound heterozygous variants in TOMM70 [c.794C>T (p.T265M) and c.1745C>T (p.A582V)] from a patient with severe anemia, lactic acidosis, and developmental delay. Patient-derived immortalized lymphocytes showed decreased TOM70 expression, oligomerized TOM70 complex, and TOM 20/22/40 complex compared with expression in control lymphocytes. Functional analysis revealed that patient-derived cells exhibited multi-oxidative phosphorylation system (OXPHOS) complex defects, with complex IV being primarily affected. As a result, patient-derived cells grew slower in galactose medium and generated less ATP and more extracellular lactic acid than did control cells. In vitro cell model compensatory experiments confirmed the pathogenicity of TOMM70 variants since only wild-type TOM70, but not mutant TOM70, could restore the complex IV defect and TOM70 expression in TOM70 knockdown U2OS cells. Altogether, we report the first case of mitochondrial disease-causing mutations in TOMM70 and demonstrate that TOM70 is essential for multi-OXPHOS assembly. Mutational screening of TOMM70 should be employed to identify mitochondrial disease-causing gene mutations in the future.


Assuntos
Acidose Láctica/genética , Anemia/genética , Deficiências do Desenvolvimento/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Acidose Láctica/patologia , Anemia/patologia , Criança , Deficiências do Desenvolvimento/patologia , Humanos , Masculino , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação/genética , Fosforilação Oxidativa , Sequenciamento do Exoma
17.
Hum Mutat ; 41(5): 961-972, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944455

RESUMO

Mutations in FASTKD2, a mitochondrial RNA binding protein, have been associated with mitochondrial encephalomyopathy with isolated complex IV deficiency. However, deficiencies related to other oxidative phosphorylation system (OXPHOS) complexes have not been reported. Here, we identified three novel FASTKD2 mutations, c.808_809insTTTCAGTTTTG, homoplasmic mutation c.868C>T, and heteroplasmic mutation c.1859delT/c.868C>T, in patients with mitochondrial encephalomyopathy. Cell-based complementation assay revealed that these three FASTKD2 mutations were pathogenic. Mitochondrial functional analysis revealed that mutations in FASTKD2 impaired the mitochondrial function in patient-derived lymphocytes due to the deficiency in multi-OXPHOS complexes, whereas mitochondrial complex II remained unaffected. Consistent results were also found in human primary muscle cell and zebrafish with knockdown of FASTKD2. Furthermore, we discovered that FASTKD2 mutation is not inherently associated with epileptic seizures, optic atrophy, and loss of visual function. Alternatively, a patient with FASTKD2 mutation can show sinus tachycardia and hypertrophic cardiomyopathy, which was partially confirmed in zebrafish with knockdown of FASTKD2. In conclusion, both in vivo and in vitro studies suggest that loss of function mutation in FASTKD2 is responsible for multi-OXPHOS complexes deficiency, and FASTKD2-associated mitochondrial disease has a high degree of clinical heterogenicity.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Mitocôndrias/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação , Proteínas Serina-Treonina Quinases/genética , Trifosfato de Adenosina/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Linhagem Celular , Respiração Celular/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Técnicas de Silenciamento de Genes , Estudos de Associação Genética/métodos , Humanos , Linfócitos/imunologia , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Modelos Moleculares , Fosforilação Oxidativa , Linhagem , Fenótipo , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Sequenciamento do Exoma , Peixe-Zebra
18.
Front Oncol ; 10: 617190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537239

RESUMO

Tumor cells develop a series of metabolic reprogramming mechanisms to meet the metabolic needs for tumor progression. As metabolic hubs in cells, mitochondria play a significant role in this process, including energy production, biosynthesis, and redox hemostasis. In this study, we show that 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), a previously uncharacterized protein, is positively associated with the development of pancreatic ductal adenocarcinoma (PDAC) and disease prognosis. We found that overexpression of HPDL in PDAC cells promotes tumorigenesis in vitro, whereas knockdown of HPDL inhibits cell proliferation and colony formation. Mechanistically, we found that HPDL is a mitochondrial intermembrane space localized protein that positively regulates mitochondrial bioenergetic processes and adenosine triphosphate (ATP) generation in a glutamine dependent manner. Our results further reveal that HPDL protects cells from oxidative stress by reprogramming the metabolic profile of PDAC cells toward glutamine metabolism. In short, we conclude that HPDL promotes PDAC likely through its effects on glutamine metabolism and redox balance.

19.
Front Genet ; 10: 1302, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998365

RESUMO

Inborn errors of metabolism (IEMs) have great repercussions in neonatal intensive care units (NICUs). However, the integrative analysis of the incidence for full-term and premature neonates of IEMs in NICUs have not been reported. In this study, we aimed to estimate the incidence of IEMs in the NICU population so as to better evaluate the impact of IEMs on Chinese NICUs. A total of 42,257 newborns (proportion of premature as 36.7%) enrolled to the largest Chinese NICU center for a sequential 7 years screen, and 66 were diagnosed with IEMs. The prevalence of IEMs in total, full-term, and premature infants was 1:640, 1:446, and 1:2,584, respectively. In spectrum of our NICU, diseases that cause endogenous intoxication like methylmalonic acidemia accounted for 93.9% (62/66), and this ratio was higher in full-term infants with 98.3% (59/60), while the most prevalent disease in premature newborn was hyperphenylalaninemia (50%, 3/6), respectively. The genetic analysis of 49 cases revealed 62 potentially pathogenic mutations in 10 well-documented pathogenic genes of IEMs, among which 21 were novel. In conclusion, differences in incidence and spectrum of full-term and premature births we obtained in NICU will provide diagnostic guidelines and therapeutic clues of neonatal IEMs for pediatricians.

20.
J Hum Genet ; 63(12): 1283-1284, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266949

RESUMO

The originally published version of this article contained an error in Figure 1. The correct figure of this article should have read as below. This has now been corrected in the PDF and HTML versions of the article. The authors apologize for any inconvenience caused.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...