Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(7): e11722, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994211

RESUMO

In recent decades, hypoxic areas have rapidly expanded worldwide in estuaries and coastal zones. The Pearl River Estuary (PRE), one of China's largest estuaries, experiences frequent seasonal hypoxia due to intense human activities and eutrophication. However, the ecological effects of hypoxia in the PRE, particularly on fish communities, remain unclear. To explore these effects, we collected fish community and environmental data in July 2021 during the summer hypoxia development period. The results revealed that bottom-layer dissolved oxygen (DO) in the PRE ranged from 0.08 to 5.71 mg/L, with extensive hypoxic zones (DO ≤ 2 mg/L) observed. Hypoxia has varied effects on fish community composition, distribution, species, and functional diversity in the PRE. A total of 104 fish species were collected in this study, with approximately 30 species (28.6%) exclusively found in hypoxic areas. Species responses to hypoxia varied: species such as Sardinella zunasi, Coilia mystus, and Nuchequula nuchalis were sensitive, while Decapterus maruadsi, Siganus fuscescens, and Lagocephalus spadiceus showed higher tolerance. Within the hypoxia area, dissolved oxygen was the main limiting factor for fish community diversity. Functional diversity (FDiv) decreased with higher dissolved oxygen levels, indicating a potential shift in the functional traits and ecological roles of fish species in response to changing oxygen conditions. Further analysis demonstrated that dissolved oxygen had a significantly stronger effect on fish community structure at hypoxic sites than in the whole PRE. Moreover, other environmental variables also had significant effects on the fish community structure and interacted with dissolved oxygen in the hypoxia area. These findings suggest that maintaining sufficient dissolved oxygen levels is essential for sustaining fish communities and ecosystem health in the PRE. This study provides novel insights into the effects of hypoxia on fish communities in estuarine ecosystems and has significant implications for the ecological health and management of the PRE.

2.
BMC Ecol Evol ; 23(1): 16, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158858

RESUMO

BACKGROUND: Artificial habitats can allow many fish to flock together and interact and have been widely used to restore and protect fishery resources. The piece of research intends to elucidate the relationship of microbial communities between tilapia (Oreochromis mossambicus) intestines and artificial fishery habitats (water and sediments). Hence, 16 S rDNA sequencing technology was used to study the bacterial communities from intestines, water, and sediments. RESULTS: The results showed that the tilapia intestines had the lowest richness of Operational Taxonomic Units (OTUs) and the lowest diversity of the bacterial community compared to water and sediments. The intestine, water, and sediment microbial communities shared many OTUs. Overall, 663 shared OTUs were identified from the tilapia intestines (76.20%), the surrounding water (71.14%), and sediment (56.86%) in artificial habitats. However, there were unique OTUs that were detected in different sample types. There were 81, 77 and 112 unique OTUs observed in tilapia intestines, the surrounding water and sediment, respectively. Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, Fusobacteria, and Bacteroidetes were the most common and dominant bacterial phyla between the tilapia intestines and habitats. In the two groups, the microbial communities were similar in the taxonomic composition but different in the abundance of bacterial phyla. Interestingly, Firmicutes increased, while Fusobacteria decreased in artificial habitats. These findings indicated that the artificial habitats had fewer effects on the water environment and indicated that the mode of artificial habitats could have an effect on the enriched bacteria in the tilapia intestines. CONCLUSIONS: This study analysed the bacterial communities of artificial habitats from the intestines, water, and sediments, which can explain the relationship between the tilapia intestines and habitats and strengthen the value of ecological services provided by artificial habitats.


Assuntos
Microbiota , Tilápia , Verbenaceae , Animais , Pesqueiros , Fusobacterium , Fusobactérias , Firmicutes , Microbiota/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA