Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 1031600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507259

RESUMO

This study aims to validate a numerical model developed for assessing personalized circle of Willis (CoW) hemodynamics under pathological conditions. Based on 66 computed tomography angiography images, investigations were obtained from 43 acute aneurysmal subarachnoid hemorrhage (aSAH) patients from a local neurovascular center. The mean flow velocity of each artery in the CoW measured using transcranial Doppler (TCD) and simulated by the numerical model was obtained for comparison. The intraclass correlation coefficient (ICC) over all cerebral arteries for TCD and the numerical model was 0.88 (N = 561; 95% CI 0.84-0.90). In a subgroup of patients who had developed delayed cerebral ischemia (DCI), the ICC had decreased to 0.72 but remained constant with respect to changes in blood pressure, Fisher grade, and location of ruptured aneurysm. Our numerical model showed good agreement with TCD in assessing the flow velocity in the CoW of patients with aSAH. In conclusion, the proposed model can satisfactorily reproduce the cerebral hemodynamics under aSAH conditions by personalizing the numerical model with TCD measurements. Clinical trial registration: [http://www.trialregister.nl/], identifier [NL8114].

2.
J Pers Med ; 12(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743791

RESUMO

Background: The role of regional hemodynamics in the intracranial aneurysmal formation, growth, and rupture has been widely discussed based on numerical models over the past decades. Variation of the circle of Willis (CoW), which results in hemodynamic changes, is associated with the aneurysmal formation and rupture. However, such correlation has not been further clarified yet. The aim of this systematic review is to investigate whether simulated hemodynamic indices of the CoW are relevant to the formation, growth, or rupture of intracranial aneurysm. Methods: We conducted a review of MEDLINE, Web of Science, and EMBASE for studies on the correlation between hemodynamics indices of the CoW derived from numerical models and intracranial aneurysm up to December 2020 in compliance with PRISMA guidelines. Results: Three case reports out of 1046 publications met our inclusion and exclusion criteria, reporting 13 aneurysms in six patients. Eleven aneurysms were unruptured, and the state of the other two aneurysms was unknown. Wall shear stress, oscillatory shear index, von-Mises tension, flow velocity, and flow rate were reported as hemodynamic indices. Due to limited cases and significant heterogeneity between study settings, meta-analysis could not be performed. Conclusion: Numerical models can provide comprehensive information on the cerebral blood flow as well as local flow characteristics in the intracranial aneurysm. Based on only three case reports, no firm conclusion can be drawn regarding the correlation between hemodynamic parameters in the CoW derived from numerical models and aneurysmal formation or rupture. Due to the inherent nature of numerical models, more sensitive analysis and rigorous validations are required to determine its measurement error and thus extend their application into clinical practice for personalized management. Prospero registration number: CRD42021125169.

3.
Front Bioeng Biotechnol ; 10: 835347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309980

RESUMO

Cerebral hemodynamics play an important role in the development of cerebrovascular diseases. In this work, we propose a numerical framework for modeling patient-specific cerebral blood flow, using commonly available clinical datasets. Our hemodynamic model was developed using Simscape Fluids library in Simulink, based on a block diagram language. Medical imaging data obtained from computerized tomography angiography (CTA) in 59 patients with aneurysmal subarachnoid hemorrhage was used to extract arterial geometry parameters. Flow information obtained from transcranial Doppler (TCD) measurement was employed to calibrate input parameters of the hemodynamic model. The results show that the proposed numerical model can reproduce blood flow in the circle of Willis (CoW) per patient per measurement set. The resistance at the distal end of each terminal branch was the predominant parameter for the flow distribution in the CoW. The proposed model may be a promising tool for assessing cerebral hemodynamics in patients with cerebrovascular disease.

4.
BMJ Open ; 10(6): e036404, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32503872

RESUMO

INTRODUCTION: We developed a zero-dimensional (0D) model to assess the patient-specific haemodynamics in the circle of Willis (CoW). Similar numerical models for simulating the cerebral blood flow (CBF) had only been validated qualitatively in healthy volunteers by magnetic resonance (MR) angiography and transcranial Doppler (TCD). This study aims to validate whether a numerical model can simulate patient-specific blood flow in the CoW under pathological conditions. METHODS AND ANALYSIS: This study is a diagnostic accuracy study. We aim to collect data from a previously performed prospective study that involved patients with aneurysmal subarachnoid haemorrhage (aSAH) receiving both TCD and brain Computerd Tomography angiography (CTA) at the same day. The cerebral flow velocities are calculated by the 0D model, based on the vessel diameters measured on the CTA of each patient. In this study, TCD is considered the gold standard for measuring flow velocity in the CoW. The agreement will be analysed using Pearson correlation coefficients. ETHICS AND DISSEMINATION: This study protocol has been approved by the Medical Ethics Review Board of the University Medical Center Groningen: METc2019/103. The results will be submitted to an international scientific journal for peer-reviewed publication. TRIAL REGISTRATION NUMBER: NL8114.


Assuntos
Círculo Arterial do Cérebro/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Círculo Arterial do Cérebro/diagnóstico por imagem , Protocolos Clínicos , Angiografia por Tomografia Computadorizada , Humanos , Modelos Estatísticos , Reprodutibilidade dos Testes , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/fisiopatologia , Ultrassonografia Doppler Transcraniana
5.
Acta Mech Sin ; 33(4): 647-662, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798524

RESUMO

The development of new wave energy converters has shed light on a number of unanswered questions in fluid mechanics, but has also identified a number of new issues of importance for their future deployment. The main concerns relevant to the practical use of wave energy converters are sustainability, survivability, and maintainability. Of course, it is also necessary to maximize the capture per unit area of the structure as well as to minimize the cost. In this review, we consider some of the questions related to the topics of sustainability, survivability, and maintenance access, with respect to sea conditions, for generic wave energy converters with an emphasis on the oscillating wave surge converter. New analytical models that have been developed are a topic of particular discussion. It is also shown how existing numerical models have been pushed to their limits to provide answers to open questions relating to the operation and characteristics of wave energy converters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...