Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(5)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38787129

RESUMO

Zirconium is recognized as one of the main impurities of the rare earth element scandium during purification. It presents significant challenges due to its similar chemical properties, making separating it difficult. This study used trialkyl phosphine oxide (TRPO) as a functional ligand, and the effects of carrier type and acidity on adsorption performance were first investigated. Among these, the novel extraction resin SiO2-P as a carrier for TRPO demonstrated more prominent separation performance in 0.2 M H2SO4 and 5 M HCl solutions. The kinetic and isotherm data were consistent with the pseudo-secondary kinetics and Langmuir model, respectively, and the adsorption process could be regarded as homogeneous monolayer adsorption subject to the dual effects of chemisorption and internal diffusion. In addition, thermodynamic analysis showed that the adsorption process of zirconium under the experimental conditions was a spontaneous endothermic process. Combined with the results of SEM-EDS, FT-IR, and XPS analyses, scandium and zirconium were successfully adsorbed by the resin and uniformly distributed on its surface, and the greater affinity of the P=O groups on the resin for zirconium was the critical factor contributing to the separation of scandium and zirconium. Finally, scandium and zirconium in sulfuric acid and hydrochloric acid media were extracted and separated by column experiments, and the purity of scandium could reach 99.8% and 99.99%, respectively.

2.
J Hazard Mater ; 471: 134431, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691936

RESUMO

To promote the environmentally friendly and sustainable development of nuclear energy, it is imperative to address the treatment of wastewater generated by the nuclear industry. This necessitates the enhancement of fission product reclamation efficiency post-treatment. This study aims to combine defect control and confined self-assembly strategies for the precise design of interlayer spacing (14.6 Å to 15.1 Å), leading to the fabrication of conditional natroxalate-functionalized vanadosilicate, and its potential application in the efficient adsorption and reclamation of 90Sr. Na0.03Natroxalate2.47Si1.44Nb0.08V1.92O5·1.2 H2O (Nb4-NxSiVO), with a layer spacing of 14.9 Å, exhibits the highest Sr(II) adsorption capacity (248.76 mg/g), enabling effective separation with Cs+. The natroxalate embedded within the confined interlayers demonstrates excellent stability, offering rapid (within 10 min) and stable adsorption sites for Sr(II). Furthermore, Nb4-NxSiVO exhibits a wide band gap and exceptional thermal stability before and after adsorption, rendering hard desorption of 90Sr. The findings highlight the potential of Nb4-NxSiVO as a promising adsorbent for rapid and selective purification of 90Sr-containing wastewater and further application in nuclear batteries.

3.
Toxics ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535914

RESUMO

Ruthenium is required to separate from high-level liquid waste (HLLW) because Ru is a valuable resource and is negatively influential on the vitrification process of HLLW. However, the separation of Ru is very challenging due to its complicated complexation properties. In this study, the adsorption and desorption characteristics of ruthenium on a synthesized SiPyR-N3 (weak-base anion exchange resin with pyridine functional groups) composite were investigated in nitric acid and nitrite-nitric acid systems, respectively, and the adsorption mechanism was explored. The experimental results showed that SiPyR-N3 has a significantly better adsorption effect on Ru in the nitrite-nitric acid system than in the nitric acid system, with an increase in the adsorption capacity of approximately three times. The maximum adsorption capacity of Ru is 45.6 mg/g in the nitrite-nitric acid system. The SiPyR-N3 possesses good adsorption selectivity (SFRu/other metal ions is around 100) in 0.1 M NO2--0.1 M HNO3 solution. The adsorption processes of Ru in the two different systems are fitted with the pseudo-second-order kinetic model and Langmuir model for uptake kinetics and adsorption isotherms, respectively. The results obtained from the FT-IR, XPS, and UV absorption spectrometry indicate that NO2- was involved in the adsorption process either as a complexing species with the metal ions or as free NO2- from the solution. A 0.1 M HNO3 + 1 M thiourea mixed solution shows effective desorption performance, and the desorption efficiency can reach 92% at 328 K.

4.
J Environ Manage ; 353: 120283, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330842

RESUMO

The recovery of rare earth elements (REEs) including neodymium (Nd) and dysprosium (Dy) from NdFeB permanent magnets has become one of the main ways to solve the increased demand for rare earth. Herein, n-dodecyl phosphate (DPPA) was used for the first time as the adsorption functional group donor, sodium alginate as the substrate, and calcium chloride solution as the reactive solvent, a hybrid hydrogel adsorbent DPPA/CaALG was synthesized by sol-gel method for application in the adsorption and separation of Nd and Dy from the Co-Nd-Dy ternary system. SEM-EDS, and N2 adsorption-desorption analysis showed the successful preparation of DDPA/CaALG with mesoporous structure. Batch experiments showed the superiority of the hybrid hydrogel for the good selective adsorption of Nd and Dy, such as large adsorption capacity (Nd: 162.5 mg/g, Dy: 183.5 mg/g), and no adsorption for Co. FT-IR, XPS showed that PO and P-O groups are involved in the adsorption process of Nd and Dy as electron acceptors, where the ion exchange of P-OH is dominant. Furthermore, the chemical properties of ligands and complexes were analyzed by Density Functional Theory (DFT) calculations and revealed their adsorption behaviors as well as the competition between different metal ions.


Assuntos
Metais Terras Raras , Neodímio , Disprósio , Hidrogéis , Adsorção , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Fosfatos
5.
J Hazard Mater ; 467: 133741, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341887

RESUMO

Radioactive strontium (90Sr) is considered as one of the most dangerous radionuclides due to its high biochemical toxicity. For the efficient and selective separation of Sr from acidic environments, a novel functional adsorbent CEPA@SBA-15-APTES was prepared in this work through the phosphorylation of amino-modified mesoporous silica with organic content of approximately 20 wt%. CEPA@SBA-15-APTES was characterized by TEM, SEM, EDS, TG-DSC, BET, FTIR, and XPS techniques, revealing its characteristics of an ordered hexagonal lattice-like structure and rich functional groups. The experimental results demonstrated that the adsorbent exhibited good adsorption capacity for Sr over a wide acidity range (i.e., from 10-10 M to 4 M HNO3). The adsorption equilibriums of Sr by CEPA@SBA-15-APTES in 10-6 M and 3 M HNO3 solutions were reached within 30 and 5 min, respectively, and the adsorption capacities at 318 K were 112.6 and 71.8 mg/g, respectively. Furthermore, by combining the experimental and characterization results, we found that the adsorption mechanism consisted of ion exchange between Sr(II) and H+ (in P-OH) in the 10-6 M HNO3 solution and coordination between the Sr(II) and oxygen-containing (CO and P = O) functional groups in the 3 M HNO3 solution.

6.
Chemosphere ; 350: 141184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215834

RESUMO

Efficient recognition, separation and recovery of palladium from high-level liquid waste (HLLW) not only helps the safe, green and environmentally friendly disposal of nuclear waste, but also is an essential important supplement to overcome the growing shortage of natural palladium resources. Herein, a novel silica-based functional adsorbent named 2AT-SiAaC was prepared by a two-step method, i.e., grafting of 2-aminothiazole (2AT) via the amidated reaction after in-situ polymerization of acrylic monomers on porous silica. SEM, EDS, TG-DSC, BET and PXRD all proved the successful preparation of 2AT-SiAaC, and it exhibited ultrahigh adsorption selectivity for Pd(II) (Kd (distribution coefficient) ≥ 10,344.2 mL/g, SFPd/M (separation factor) ≥ 613.7), fast adsorption kinetics with short equilibrium time (t ≤ 1 h) and good adsorption capacity (Q ≥ 62.1 mg Pd/g). The dynamic column experiments shows that 2AT-SiAaC achieved efficiently separation of Pd(II) from simulated HLLW, and the enrichment coefficients (C/C0) of Pd(II) was as high as about 14 with the recovery rate nearly 99.9% and basically kept the same performance in three adsorption-desorption column cycle experiments. The adsorption mechanism was analyzed by FT-IR, XPS and DFT calculations, and the ultrahigh selectivity of 2AT-SiAaC was attributed to the preferred affinity of the soft N-donor atoms in 2AT for Pd(II). NO3- ions participated in the adsorption reaction to keep charge balance, and the frontier orbital electron density distribution diagram shows the charge transfer in the process of material preparation and adsorption. To sum up, 2AT-SiAaC adsorbent provided a new insight for precise recognition and efficient separation of Pd(II) from HLLW.


Assuntos
Paládio , Tiazóis , Poluentes Químicos da Água , Paládio/análise , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética
7.
Dalton Trans ; 53(4): 1586-1598, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165017

RESUMO

Accurate separation and efficient recovery of platinum group metals (PGMs, mainly Ru, Rh and Pd) from high level liquid waste (HLLW) is a good choice for clean production and sustainable development of nuclear energy. Herein a novel SDB polymer modified silica-based amine-functionalized composite (dNbpy/SiO2-P) was synthesized for the separation and recovery of PGMs. Laser particle size analysis and BET results clarified the regular spherical and highly interconnected mesoporous structure of dNbpy/SiO2-P which is critical for the separation of PGMs. The removal percent of PGMs were over 99% on the optimized conditions. In addition, dNbpy/SiO2-P showed excellent selectivity (SFPd/M > 3805, SFRu/M > 1705, SFRh/M > 336) and repeatability (≥5). Interestingly, based on the different adsorption and desorption kinetics of PGMs, a double-column strategy is designed to solve the challenge of separating and recovering PGMs from HLLW. The enrichment factors of Pd(II), Ru(III) and Rh(III) reached 36.7, 8.2, and 1.2. The adsorption of PGMs was coordination mechanism and required the involvement of NO3- to maintain charge balance. The specific distribution of elements within the adsorbents and the changes in valence state were analyzed using depth-profiling XPS. Both depth-profiling XPS results and slope analysis revealed that the complex of dNbpy and PGMs is a 1 : 1 coordination structure. Overall, this work fills the gap that PGMs cannot be effectively separated and enriched from HLLW.

8.
Small ; : e2307304, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054780

RESUMO

The construction of heterojunction photocatalysts is an auspicious approach for enhancing the photocatalytic performance of wastewater treatment. Here, a novel CeO2 /Bi2 WO6 heterojunction is synthesized using an in situ liquid-phase method. The optimal 15% CeO2 /Bi2 WO6 (CBW-15) is found to have the highest photocatalytic activity, achieving a degradation efficiency of 99.21% for tetracycline (TC), 98.43% for Rhodamine B (RhB), and 94.03% for methylene blue (MB). The TC removal rate remained at 95.38% even after five cycles. Through active species capture experiments, •O2 - , h+ , and •OH are the main active substances for TC, RhB, and MB, respectively. The possible degradation pathways for TC are analyzed using liquid chromatography-mass spectrometry (LC-MS). The photoinduced charge transfer and possible degradation mechanisms are proposed through experimentation and density functional theory (DFT) calculations. Toxicity assessment experiments show a significant reduction in toxicity during the TC degradation process. This study uncovers the mechanism of photocatalytic degradation in CeO2 /Bi2 WO6 and provides new insights into toxicity assessment.

9.
Toxics ; 11(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133355

RESUMO

Over the past few decades, with the rapid growth of the global population and economy, the increasing levels of various pollutants such as heavy metals, radionuclides, and organic/inorganic/biological toxins from various industries and human activities, which diffuse into aspects of the environment such as the atmosphere, soil, and natural water, have posed a serious threat to human health and the environment [...].

10.
Toxics ; 11(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37999571

RESUMO

A crown ether-loaded hybrid adsorbent suitable for the separation and enrichment of strontium from high-level liquid waste was synthesized. 4',4'(5″)-di(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6) and its modifiers dodecyl benzenesulfonic acid (DBS) and 1-dodecanol were impregnated into silica-based polymer support. The hybrid adsorbent exhibited excellent Sr(II) selectivity ability, and effective chromatographic separation and recovery of Sr(II) from simulated high-level liquid waste could be achieved with a (DtBuCH18C6 + DBS + dodec)/SiO2-P packed column. The recovery rate of Sr(II) calculated based on the mass balance was approximately 99% and over 80% for the other coexisting metal ions. An appropriate increase in the concentration of Na-DTPA eluent was favorable to improve the efficiency of the elution process because of the increased complexation capacity of [DTPA]5- to Sr(II). The developed theoretical model can simulate the dynamic breakthrough curves of the material on the basis of short column data, thereby predicting the scale-up column of the practical operation. Density functional theory calculation was used to explore the action mechanism of DBS modifiers on the Sr(II) complexation process of crown ether groups. Two Sr(II) complexation isomeric models of DtBuCH18C6 were established, and the calculation results revealed a similar complexation ability. DtBuCH18C6 could form a stable Sr(II) complexation structure with DBS coordination, which further indicated that DBS could be a ligand to promote the Sr(II) adsorption ability of crown ether materials.

11.
Nanotechnology ; 35(3)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37848017

RESUMO

Cobalt carbides are emerging as promising materials for various magnetic and catalytic applications. However, exploring dedicated cobalt carbides with optimal catalytic properties via adjusting phase compositions remains a significant challenge. Herein, three different cobalt carbides, CoxC (Co2C-Co3C), Co2C-Co, and Co3C, were successfully prepared using a facile one-pot green method. The phase compositions of cobalt carbides could be easily controlled by varying the cobalt-based precursors and carbon sources. More remarkably, three different cobalt carbides could serve as reduction cocatalysts decorated CdS for improved hydrogen production under visible light. Intriguingly, the obtained Co3C/CdS nanocomposite displayed the highest photocatalytic hydrogen evolution activity among the three composites and superior photocatalytic stability. This work provides a fundamental approach to tuning the photocatalytic properties of cobalt carbides for energy conversion fields.

12.
Toxics ; 11(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37888700

RESUMO

Strontium is a common radionuclide in radioactive waste, and its release into the environment can cause enormous damage to the ecosystem environment. In this study, the natural mineral allophane was selected as the substrate to prepare solidified ceramic products by cold pressing/sintering to solve the problem of the final disposal of radioactive strontium. Ceramic solidified products with various crystal structures were successfully prepared, and the microscopic morphology and energy-dispersive spectroscopy images of the samples showed a uniform distribution of Sr in the solidified products. Sr2Al2SiO7 and SrAl2Si2O8, which can stably solidify strontium, were formed in the solidified products, and the structural characteristics and stability of the above-mentioned substances were analyzed from the perspective of quantum chemical calculations using density functional theory. The calculation results showed that the overall deformation resistance of Sr2Al2SiO7 was higher than that of SrAl2Si2O8. Considering the isomorphic substitution effect of CaO impurities, we inferred that a mixed-crystalline structure of Ca2-xSrxAl2SiO7 may be present in the solidified products.

13.
Sci Rep ; 13(1): 3663, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871118

RESUMO

Nanobubbles have been applied in many fields, such as environmental cleaning, material production, agriculture, and medicine. However, the measured nanobubble sizes differed among the measurement methods, such as dynamic light scattering, particle trajectory, and resonance mass methods. Additionally, the measurement methods were limited with respect to the bubble concentration, refractive index of liquid, and liquid color. Here, a novel interactive force measurement method for bulk nanobubble size measurement was developed by measuring the force between two electrodes filled with bulk nanobubble-containing liquid under an electric field when the electrode distance was changed in the nm scale with piezoelectric equipment. The nanobubble size was measured with a bubble gas diameter and also an effective water thin film layer covered with a gas bubble that was estimated to be approximately 10 nm based on the difference between the median diameter of the particle trajectory method and this method. This method could also be applied to the solid particle size distribution measurement in a solution.

14.
Gels ; 9(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36826322

RESUMO

Although Cs(I) and Sr(II) are not strategic and hazardous metal ions, their recovery from aqueous solutions is of great concern for the nuclear industry. The objective of this work consists of designing a new sorbent for the simultaneous recovery of these metals with selectivity against other metals. The strategy is based on the functionalization of algal/polyethyleneimine hydrogel beads by phosphonation. The materials are characterized by textural, thermo-degradation, FTIR, elemental, titration, and SEM-EDX analyses to confirm the chemical modification. To evaluate the validity of this modification, the sorption of Cs(I) and Sr(II) is compared with pristine support under different operating conditions: the pH effect, kinetics, and isotherms are investigated in mono-component and binary solutions, before investigating the selectivity (against competitor metals) and the possibility to reuse the sorbent. The functionalized sorbent shows a preference for Sr(II), enhanced sorption capacities, a higher stability at recycling, and greater selectivity against alkali, alkaline-earth, and heavy metal ions. Finally, the sorption properties are compared for Cs(I) and Sr(II) removal in a complex solution (seawater sample). The combination of these results confirms the superiority of phosphonated sorbent over pristine support with promising performances to be further evaluated with effluents containing radionuclides.

15.
J Colloid Interface Sci ; 629(Pt B): 97-110, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152584

RESUMO

The synergistic effect between transition metal active centers and the generation of multiple removal pathways has a significant impact on the catalytic activation efficiency of peroxymonosulfate. In this work, a kind of composite catalyst was prepared by growing VCo-metal-organic frameworks (VCo-MOF) in-situ on the surface of Ti3C2Tx by a solvothermal method. The morphology and structure are characterized by Transmission Electron Microscope (TEM), Energy Dispersion Spectrum (EDS), Atomic Force Microscope (AFM), etc. Response surface methodology was used to optimize the experimental conditions. Only 5 mg catalyst can be used to effectively activate PMS and remove 96.14 % ciprofloxacin (CIP, 20 mg/L) within 30 min. The removal effect of catalyst on CIP in different actual water environment was explored. In addition, the fluorescence spectrum test also verified the effective removal of ciprofloxacin. V-Co-Ti ternary system provides a wealth of active sites for CIP removal. Cyclic voltammetry (CV) and lear sweep voltammetry (LSV) tests showed the existence of the electron transfer pathway. The results of density functional theory (DFT) calculation show that VCo-MOF@Ti3C2Tx has excellent adsorption and activation ability for PMS. At the same time, the hydrophilicity of the catalyst makes PMS more inclined to react with water molecules, which promotes the formation of a unique superoxide radical path.

16.
Toxics ; 10(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36548574

RESUMO

To separate the long-lived minor actinides (MA = Am, Cm) from high-level liquid waste (HLLW), we have been studying an advanced separation process via selective adsorption that uses minimal amounts of organic solvent and compact equipment. The process consists of two separation columns packed with a CMPO (octyl(phenyl)-N,N-diisobutylcarbamoyl-methyl phosphine oxide) adsorbent for elemental group separation and a soft-donor named the R-BTP (2,6-bis-(5,6-dialkyl-1,2,4-triazine-3-yl) pyridine) adsorbent for the isolation of MA from lanthanides (Ln). In this work, the effects of nitrate ion (NO3-) on the adsorption behavior of Am(III) and a typical fission product Ln(III) onto the isoBu-BTP/SiO2-P adsorbent were studied experimentally. Then, the desorption properties of the adsorbed element were examined using different eluting agents. A hot test for the separation of MA from the fission product Ln in a genuine MA containing effluent from the irradiated MOX-fuel treatment process was carried out using a nBu-BTP/SiO2-P packed column. It was found that the separation factor between Am(III) and Ln(III)-FP is over 100 in the measured 0.5-4 M NO3-. The adsorbed elements could be effectively eluted off using a complexing agent such as DTPA or pure water. Complete separation between MA and Ln was achieved in the column results, indicating that the proposed MA separation process is feasible in principle.

17.
Molecules ; 27(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36364388

RESUMO

The recovery of strategic metals such as rare earth elements (REEs) requires the development of new sorbents with high sorption capacities and selectivity. The bi-functionality of sorbents showed a remarkable capacity for the enhancement of binding properties. This work compares the sorption properties of magnetic chitosan (MC, prepared by dispersion of hydrothermally precipitated magnetite microparticles (synthesized through Fe(II)/Fe(III) precursors) into chitosan solution and crosslinking with glutaraldehyde) with those of the urea derivative (MC-UR) and its sulfonated derivative (MC-UR/S) for cerium (as an example of REEs). The sorbents were characterized by FTIR, TGA, elemental analysis, SEM-EDX, TEM, VSM, and titration. In a second step, the effect of pH (optimum at pH 5), the uptake kinetics (fitted by the pseudo-first-order rate equation), the sorption isotherms (modeled by the Langmuir equation) are investigated. The successive modifications of magnetic chitosan increases the maximum sorption capacity from 0.28 to 0.845 and 1.25 mmol Ce g-1 (MC, MC-UR, and MC-UR/S, respectively). The bi-functionalization strongly increases the selectivity of the sorbent for Ce(III) through multi-component equimolar solutions (especially at pH 4). The functionalization notably increases the stability at recycling (for at least 5 cycles), using 0.2 M HCl for the complete desorption of cerium from the loaded sorbent. The bi-functionalized sorbent was successfully tested for the recovery of cerium from pre-treated acidic leachates, recovered from low-grade cerium-bearing Egyptian ore.


Assuntos
Cério , Quitosana , Quitosana/química , Óxido Ferroso-Férrico , Adsorção , Ureia , Compostos Férricos , Concentração de Íons de Hidrogênio , Cinética
18.
Toxics ; 10(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36355930

RESUMO

A silica-based anion exchange resin was synthesized and used to remove 99Tc from real radioactive liquid waste. The adsorbent had a uniform particle size and exhibited good thermal stability up to 100 °C, which is promising for large-scale column experiments. In accordance with the chemical similarity with Tc, Re was used as a surrogate in this study. The N 1s high-resolution XPS spectra of the adsorbent before and after the adsorption of Re indicated that the ion exchange reaction was the controlling mechanism in the process. After γ-ray irradiation, the changing trend of the Kd was consistent, which showed that the competitive adsorption of NO3- led to a decrease in Kd. The adsorption capacity for the Re decreased slightly from 35.8 to 31.9 mg/g with the increase in the absorbed dose from 0 to 50 kGy. The separation and recovery of Re and the coexisting ions were achieved by chromatographic separation experiments, and the recovery percentage of Re was 86%. In real radioactive liquid waste, N3/SiO2 exhibited good selectivity toward 99Tc over the coexisting metals, namely, 90Sr, 137Cs, 241Am, and U, and the decontamination efficiency of 99Tc attained 65%.

19.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296719

RESUMO

Sulfonic resins are highly efficient cation exchangers widely used for metal removal from aqueous solutions. Herein, a new sulfonation process is designed for the sulfonation of algal/PEI composite (A*PEI, by reaction with 2-propylene-1-sulfonic acid and hydroxylamine-O-sulfonic acid). The new sulfonated functionalized sorbent (SA*PEI) is successfully tested in batch systems for strontium recovery first in synthetic solutions before investigating with multi-component solutions and final validation with seawater samples. The chemical modification of A*PEI triples the sorption capacity for Sr(II) at pH 4 with a removal rate of up to 7% and 58% for A*PEI and SA*PEI, respectively (with SD: 0.67 g L-1). FTIR shows the strong contribution of sulfonate groups for the functionalized sorbent (in addition to amine and carboxylic groups from the support). The sorption is endothermic (increase in sorption with temperature). The sulfonation improves thermal stability and slightly enhances textural properties. This may explain the fast kinetics (which are controlled by the pseudo-first-order rate equation). The sulfonated sorbent shows a remarkable preference for Sr(II) over competitor mono-, di-, and tri-valent metal cations. Sorption properties are weakly influenced by the excess of NaCl; this can explain the outstanding sorption properties in the treatment of seawater samples. In addition, the sulfonated sorbent shows excellent stability at recycling (for at least 5 cycles), with a loss in capacity of around 2.2%. These preliminary results show the remarkable efficiency of the sorbent for Sr(II) removal from complex solutions (this could open perspectives for the treatment of contaminated seawater samples).


Assuntos
Poluentes Químicos da Água , Adsorção , Poluentes Químicos da Água/química , Cloreto de Sódio , Água do Mar , Água , Cinética , Estrôncio , Ácidos Sulfônicos , Aminas , Concentração de Íons de Hidrogênio
20.
Toxics ; 10(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36136454

RESUMO

Utilising waste amine-oxime (WAO) resin through microwave semi-carbonization, a carbon adsorbent (CA) was obtained to remove Pb(II). After microwave treatment, the pore size of the skeleton structure, three-dimensional porous network, and lamellar pore structure of WAO was improved. The distribution coefficient (Kd) of Pb(II) onto CA is 620 mL/g, and the maximum adsorption capacity of Pb(II) is 82.67 mg/g after 20 min of WAO microwave treatment. The adsorption kinetics and adsorption isotherms conform to the quasi-second-order kinetic equation and Langmuir adsorption isotherm model, respectively. The surface of MT-WAO is negatively charged and the adsorption mechanism is mainly electrostatic interaction. Pb(II) elution in hydrochloric acid solution is more than 98%, and its recovery is high at 318 K and for 1 h.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...