Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(26): 18311-18316, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38854828

RESUMO

Owing to the inherent advantages of parallelism, rapid processing speed, and minimal energy consumption, optical analog computing has witnessed a progressive development. Quantum optical computing exceeds the capabilities of classical computing in terms of computational speed in numerous tasks. However, existing metamaterial-based quantum Deutsch-Jozsa (DJ) algorithm devices have large structural dimensions and are not suitable for miniaturized optical computing systems. Furthermore, most reported on-chip metasurface devices, rendered monofunctional after fabrication, do not possess sophisticated optical systems. In this work, we develop an electrically tunable on-chip DJ algorithm device on a lithium-niobate-on-insulator (LNOI) platform. The on-chip device consists of various etched slots, each with carefully designed size. By applying different external voltages to each individual unit, precise phase redistribution across the device is attainable, enabling the realization of tunable DJ algorithm. Notably, we can determine whether the oracle metasurface yields a constant or balance function by measuring the output electric field. The on-chip device is miniaturized and easy to integrate while enabling functional reconfiguration, which paves the way for numerous applications in optical computing.

2.
Opt Express ; 32(12): 21594-21605, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859509

RESUMO

Recent progress in metagratings highlights the promise of high-performance wavefront engineering devices, notably for their exterior capability to steer beams with near-unitary efficiency. However, the narrow operating bandwidth of conventional metagratings remains a significant limitation. Here, we propose and experimentally demonstrate a dual-layer metagrating, incorporating enhanced interlayer couplings to realize high-efficiency and broadband anomalous reflection within the microwave frequency band. The metagrating facilitated by both intralayer and interlayer couplings is designed through the combination of eigenmode expansion (EME) algorithm and particle swarm optimization (PSO) to significantly streamline the computational process. Our metagrating demonstrates the capacity to reroute a normally incident wave to +1 order diffraction direction across a broad spectrum, achieving an average efficiency approximately 90% within the 14.7 to 18 GHz range. This study may pave the way for future applications in sophisticated beam manipulations, including spatial dispersive devices, by harnessing the intricate dynamics of multi-layer metagratings with complex interlayer and intralayer interactions.

3.
Nat Commun ; 15(1): 2440, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499579

RESUMO

As a milestone in the exploration of topological physics, Fermi arcs bridging Weyl points have been extensively studied. Weyl points, as are Fermi arcs, are believed to be only stable when preserving translation symmetry. However, no experimental observation of aperiodic Fermi arcs has been reported so far. Here, we continuously twist a bi-block Weyl meta-crystal and experimentally observe the twisted Fermi arc reconstruction. Although both the Weyl meta-crystals individually preserve translational symmetry, continuous twisting operation leads to the aperiodic hybridization and scattering of Fermi arcs on the interface, which is found to be determined by the singular total reflection around Weyl points. Our work unveils the aperiodic scattering of Fermi arcs and opens the door to continuously manipulating Fermi arcs.

4.
IEEE Trans Pattern Anal Mach Intell ; 46(6): 4426-4442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38241116

RESUMO

Current point cloud denoising (PCD) models optimize single networks, trying to make their parameters adaptive to each point in a large pool of point clouds. Such a denoising network paradigm neglects that different points are often corrupted by different levels of noise and they may convey different geometric structures. Thus, the intricacy of both noise and geometry poses side effects including remnant noise, wrongly-smoothed edges, and distorted shape after denoising. We propose PathNet, a path-selective PCD paradigm based on reinforcement learning (RL). Unlike existing efforts, PathNet enables dynamic selection of the most appropriate denoising path for each point, best moving it onto its underlying surface. We have two more contributions besides the proposed framework of path-selective PCD for the first time. First, to leverage geometry expertise and benefit from training data, we propose a noise- and geometry-aware reward function to train the routing agent in RL. Second, the routing agent and the denoising network are trained jointly to avoid under- and over-smoothing. Extensive experiments show promising improvements of PathNet over its competitors, in terms of the effectiveness for removing different levels of noise and preserving multi-scale surface geometries. Furthermore, PathNet generalizes itself more smoothly to real scans than cutting-edge models.

5.
Opt Express ; 32(1): 949-958, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175115

RESUMO

Dichroic beam splitters are widely used in multi wavelength laser systems, and their scattering loss affects the signal-to-noise ratio and performance of the system. In this study, we investigate forward and backward scattering induced by nodular defects in a dichroic beam splitter. The seed size, seed position, and geometric constants of nodules exhibited distinct effects on the scattering characteristics. The modeling and simulation provide valuable insights into the relationship between the structural parameters of nodules and their scattering characteristics, offering practical guidance for various high-performance optical multilayer coatings and systems.

6.
Opt Express ; 31(25): 41339-41350, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087535

RESUMO

Multilayer metagratings have strong wavefront manipulation capabilities and find important applications in beam splitters. Traditional methods rely on the phase gradient design of generalized Snell's law, which can achieve highly efficient beam splitters with uniform energy distribution. However, designing arbitrary energy distributions in different channels under two orthogonal polarizations remains a challenge because it requires more complex structures to modulate the energy flow. In this work, we employed a hybrid evolutionary particle swarm optimization (HEPSO) from the combination of particle swarm optimization (PSO) and genetic algorithm (GA) which has a strong ability to find the optimal structures that satisfy the specific energy flow distributions. We used the crossover and mutation operators of GA to improve the global search capabilities, and the velocity updating formula of PSO to replace the selection operator of GA to avoid local optimization. Using this approach, we successfully designed a uniform beam splitter with an efficiency of over 90% and two beam splitters with arbitrary energy distributions, achieving an average error of about 0.5%. The optimal and average efficiencies obtained from running 10 optimizations are 2.2% and 4% higher than those obtained using PSO alone with 30 populations and 75 iterations. We envision that the proposed method can also provide an idea for other photonics design problems.

7.
Light Sci Appl ; 12(1): 229, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714831

RESUMO

Exceptional point (EP) is a special degeneracy of non-Hermitian systems. One-dimensional transmission systems operating at EPs are widely studied and applied to chiral conversion and sensing. Lately, two-dimensional systems at EPs have been exploited for their exotic scattering features, yet so far been limited to only the non-visible waveband. Here, we report a universal paradigm for achieving a high-efficiency EP in the visible by leveraging interlayer loss to accurately control the interplay between the lossy structure and scattering lightwaves. A bilayer framework is demonstrated to reflect back the incident light from the left side ( | r-1 | >0.999) and absorb the incident light from the right side ( | r+1 | < 10-4). As a proof of concept, a bilayer metasurface is demonstrated to reflect and absorb the incident light with experimental efficiencies of 88% and 85%, respectively, at 532 nm. Our results open the way for a new class of nanoscale devices and power up new opportunities for EP physics.

8.
Micromachines (Basel) ; 14(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37512637

RESUMO

Optical tweezers (OTs) can transfer light momentum to particles, achieving the precise manipulation of particles through optical forces. Due to the properties of non-contact and precise control, OTs have provided a gateway for exploring the mysteries behind nonlinear optics, soft-condensed-matter physics, molecular biology, and analytical chemistry. In recent years, OTs have been combined with microfluidic chips to overcome their limitations in, for instance, speed and efficiency, creating a technology known as "optofluidic tweezers." This paper describes static OTs briefly first. Next, we overview recent developments in optofluidic tweezers, summarizing advancements in capture, manipulation, sorting, and measurement based on different technologies. The focus is on various kinds of optofluidic tweezers, such as holographic optical tweezers, photonic-crystal optical tweezers, and waveguide optical tweezers. Moreover, there is a continuing trend of combining optofluidic tweezers with other techniques to achieve greater functionality, such as antigen-antibody interactions and Raman tweezers. We conclude by summarizing the main challenges and future directions in this research field.

9.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049327

RESUMO

Meta-optics based on metasurfaces that interact strongly with light has been an active area of research in recent years. The development of meta-optics has always been driven by human's pursuits of the ultimate miniaturization of optical elements, on-demand design and control of light beams, and processing hidden modalities of light. Underpinned by meta-optical physics, meta-optical devices have produced potentially disruptive applications in light manipulation and ultra-light optics. Among them, optical metalens are most fundamental and prominent meta-devices, owing to their powerful abilities in advanced imaging and image processing, and their novel functionalities in light manipulation. This review focuses on recent advances in the fundamentals and applications of the field defined by excavating new optical physics and breaking the limitations of light manipulation. In addition, we have deeply explored the metalenses and metalens-based devices with novel functionalities, and their applications in computational imaging and image processing. We also provide an outlook on this active field in the end.

10.
IEEE Trans Pattern Anal Mach Intell ; 45(8): 9374-9392, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37022019

RESUMO

Convolution on 3D point clouds is widely researched yet far from perfect in geometric deep learning. The traditional wisdom of convolution characterises feature correspondences indistinguishably among 3D points, arising an intrinsic limitation of poor distinctive feature learning. In this article, we propose Adaptive Graph Convolution (AGConv) for wide applications of point cloud analysis. AGConv generates adaptive kernels for points according to their dynamically learned features. Compared with the solution of using fixed/isotropic kernels, AGConv improves the flexibility of point cloud convolutions, effectively and precisely capturing the diverse relations between points from different semantic parts. Unlike the popular attentional weight schemes, AGConv implements the adaptiveness inside the convolution operation instead of simply assigning different weights to the neighboring points. Extensive evaluations clearly show that our method outperforms state-of-the-arts of point cloud classification and segmentation on various benchmark datasets. Meanwhile, AGConv can flexibly serve more point cloud analysis approaches to boost their performance. To validate its flexibility and effectiveness, we explore AGConv-based paradigms of completion, denoising, upsampling, registration and circle extraction, which are comparable or even superior to their competitors.


Assuntos
Algoritmos , Benchmarking
11.
Opt Lett ; 48(4): 956-959, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36790984

RESUMO

Anomalous reflection from metasurfaces with 100% efficiency at optical frequencies was not achieved until an all-dielectric quasi-three-dimensional subwavelength structure was proposed. The desired nonlocal control of light waves is realized by designing phase responses of multilayer films at a single wavelength. However, a high-efficiency bandwidth is not controllable by designing only the phase response at a single wavelength. Here, we propose the use of a multilayer metasurface to achieve anomalous reflection with a customized high-efficiency bandwidth. The interference of the successive light waves scattered from the structure at multiple wavelengths is controlled by phase dispersion regulation of multilayer films. As a proof of concept, two sets of multilayer films with different phase dispersions were designed to realize broadband (∼110 nm) and narrowband (∼15 nm) anomalous reflections, both with an efficiency of over 80%. The results offer a general strategy to design high-efficiency anomalous reflection with arbitrary bandwidth and might stimulate various potential applications for metadevices.

12.
Nanoscale Adv ; 4(20): 4344-4350, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321137

RESUMO

We demonstrate an electrically biased reconfigurable chiral metasurface for controlling the polarization conversion and asymmetric transmission in a broadband manner. The reconfigurable metasurface is constructed with coupled three-layer complementary split-ring resonator (CSRR) arrays and is loaded with tunable electronic components to achieve dynamic control of reconfigurable chiral coupling in the CSRRs by simply tuning the external voltage on the structure. It is found that the polarization conversion in the metasurface can be effectively and continuously tuned in both experiments and simulations in a broadband frequency range. Meanwhile, the reconfigurable metasurface shows an asymmetric transmission (AT) effect in a broadband range for a polarized wave. The proposed reconfigurable chiral metasurface based on the active tuning of connection in the meta-structure with few functional layers is confirmed as an effective strategy for multi-functional polarization manipulation. The reported broadband properties of the chiral metasurface are promising for polarization manipulation in optical bands and applications in wireless communication.

13.
Opt Express ; 30(14): 25907-25917, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237110

RESUMO

Guided-mode resonance (GMR) bandpass filters have many important applications. The tolerance of fabrication errors that easily cause the transmission wavelength to shift has been well studied for one-dimensional (1D) anisotropic GMR gratings. However, the tolerance of two-dimensional (2D) GMR gratings, especially for different design architectures, has rarely been explored, which prevents the achievement of a high-tolerance unpolarized design. Here, GMR filters with common 2D zero-contrast gratings (ZCGs) were first investigated to reveal their differences from 1D gratings in fabrication tolerance. We demonstrated that 2D ZCGs are highly sensitive to errors in the grating linewidth against the case of 1D gratings, and the linewidth orthogonal to a certain polarization direction has much more influence than that parallel to the polarization. By analyzing the electromagnetic fields, we found that there was an obvious field enhancement inside the gratings, which could have a strong effect on the modes in the waveguide layer through the field overlap. Therefore, we proposed the introduction of an etch-stop (ES) layer between the gratings and the waveguide-layer, which can effectively suppress the interaction between the gratings and modal evanescent fields, resulting in 4-fold increased tolerance to the errors in the grating linewidth. Finally, the proposed etch-stop ZCGs (ES-ZCGs) GMR filters were experimentally fabricated to verify the error robustness.

14.
Opt Express ; 30(20): 36863-36872, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258607

RESUMO

Free-space orbital angular momentum (OAM) communication is considered as one of the potential alternative on-chip optical interconnect solutions. The number of OAM modes determines the capacity of high-speed communication. However, existing integrated vortex beam emitters have a constraint relationship between the number of OAM modes and the emitter size, rendering it difficult to emit more OAM modes with a small-sized emitter. In view of the above, this study proposes an on-chip ultracompact multimode vortex beam emitter based on vertical modes, which permits more OAM modes without requiring an increase in the size of the emitter. Vertical modes in large-aspect-ratio waveguides are pointed out to enable multimode microrings with small radii because high-order vertical modes can maintain almost the same horizontal wave vector as that of the fundamental mode. Four-mode and five-mode vortex beam emitters with the same radius of 1.5 µm are designed and the effectiveness of these emitters is verified through simulation. Furthermore, a high-efficiency and low-crosstalk approach for high-order vertical mode coupling by varying the waveguide height is presented. This research not only promotes further integration of on-chip optical interconnection, but also provides a new strategy for optical waveguide mode selection in photonic integrated circuits design.

15.
Micromachines (Basel) ; 13(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36014126

RESUMO

Optical analog computing has natural advantages of parallel computation, high speed and low energy consumption over traditional digital computing. To date, research in the field of on-chip optical analog computing has mainly focused on classical mathematical operations. Despite the advantages of quantum computing, on-chip quantum analog devices based on metasurfaces have not been demonstrated so far. In this work, based on a silicon-on-insulator (SOI) platform, we illustrated an on-chip quantum searcher with a characteristic size of 60 × 20 µm2. We applied classical waves to simulate the quantum search algorithm based on the superposition principle and interference effect, while combining it with an on-chip metasurface to realize modulation capability. The marked items are found when the incident waves are focused on the marked positions, which is precisely the same as the efficiency of the quantum search algorithm. The proposed on-chip quantum searcher facilitates the miniaturization and integration of wave-based signal processing systems.

16.
Micromachines (Basel) ; 13(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35457846

RESUMO

In this study, we demonstrate an electrically driven, polarization-controlled metadevice to achieve tunable edge-enhanced images. The metadevice was elaborately designed by integrating single-layer metalens with a liquid-crystal plate to control the incident polarization. By modulating electric-driven voltages applied on the liquid-crystal plate, the metalens can provide two polarization-dependent phase profiles (hyperbolic phase and focusing spiral phase). Therefore, the metalens can perform two-dimensional focusing and spatial differential operation on an incident optical field, allowing dynamic switching between the bright-field imaging and the edge-enhanced imaging. Capitalizing on the compactness and dynamic tuning of the proposed metadevice, our scheme carves a promising path to image processing and biomedical imaging technology.

17.
Micromachines (Basel) ; 13(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457911

RESUMO

Depth imaging is very important for many emerging technologies, such as artificial intelligence, driverless vehicles and facial recognition. However, all these applications demand compact and low-power systems that are beyond the capabilities of most state-of-art depth cameras. Recently, metasurface-based depth imaging that exploits point spread function (PSF) engineering has been demonstrated to be miniaturized and single shot without requiring active illumination or multiple viewpoint exposures. A pair of spatially adjacent metalenses with an extended depth-of-field (EDOF) PSF and a depth-sensitive double-helix PSF (DH-PSF) were used, using the former metalens to reconstruct clear images of each depth and the latter to accurately estimate depth. However, due to these two metalenses being non-coaxial, parallax in capturing scenes is inevitable, which would limit the depth precision and field of view. In this work, a bifunctional reconfigurable metalens for 3D depth imaging was proposed by dynamically switching between EDOF-PSF and DH-PSF. Specifically, a polarization-independent metalens working at 1550 nm with a compact 1 mm2 aperture was realized, which can generate a focused accelerating beam and a focused rotating beam at the phase transition of crystalline and amorphous Ge2Sb2Te5 (GST), respectively. Combined with the deconvolution algorithm, we demonstrated the good capabilities of scene reconstruction and depth imaging using a theoretical simulation and achieved a depth measurement error of only 3.42%.

18.
Sci Adv ; 8(9): eabk3381, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35235364

RESUMO

Reflecting light to a predetermined nonspecular direction is an important ability of metasurfaces, which is the basis for a wide range of applications (e.g., beam steering/splitting and imaging). However, anomalous reflection with 100% efficiency has not been achieved at optical frequencies yet, because of losses and/or insufficient nonlocal control of light waves. Here, we propose an all-dielectric quasi-three-dimensional subwavelength structure, consisting of multilayer films and metagratings, to achieve perfect anomalous reflections at optical frequencies. A complex multiple scattering process was stimulated by effectively coupling different Bloch waves and propagating waves, thus offering the metasystem the desired nonlocal control on light waves required by perfect anomalous reflections. Two perfect anomalous reflectors were demonstrated to reflect normally incident 1550-nm light to the 40°/75° directions with absolute efficiencies of 99%/99% in design (98%/88% in experiment). Our results pave the way toward realizing optical metadevices with desired high efficiencies in realistic applications.

19.
Micromachines (Basel) ; 13(3)2022 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-35334766

RESUMO

Photonic integrated circuits (PICs) have garnered increasing attention because of their high efficiency in information processing. Recently, lithium niobate on insulator (LNOI) has become a new platform for PICs with excellent properties. Several tunable devices such as on-chip tunable devices that utilize the electric-optic effect of LN have been reported. However, an on-chip electrically tunable beam modulator that can focus or deflect the wave has not yet been developed. In this study, we designed an electrically tunable LNOI metasurface for on-chip optical beam manipulation. With a carefully designed local phase profile, we realized the tunable focusing and reflection functions on the chip. As the bias voltage varies, the focusing length can be shifted up to 19.9 µm (~13λ), whereas the focusing efficiency remains greater than 72%. A continuously tunable deflection can also be achieved efficiently within a range of 0-45°. The beam modulator enhances the ability to manipulate light on LNOI chips, which is expected to promote the development of integrated on-chip photonics.

20.
Opt Express ; 30(4): 5414-5422, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209504

RESUMO

Optical coatings with extremely low scattering losses are critical in high-precision optical systems. In this study, the abnormal scattering of nodular defects in high-reflection multilayer coatings was investigated experimentally and theoretically. The measurements and finite-difference time-domain simulations showed that the total scattering does not vary monotonically with increasing nodular structure size, but rather oscillates. Field distribution analysis revealed that the anomalous scattering originates from the coupling of the incident light with the surface wave at the top of the defects. These findings contribute to the field of low-scattering-loss multilayer coatings and high-precision optical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...