Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Vis Exp ; (203)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38284527

RESUMO

We developed a simple screening system for the evaluation of neuromuscular and general toxicity in zebrafish embryos. The modular system consists of electrodynamic transducers above which tissue culture dishes with embryos can be placed. Multiple such loudspeaker-tissue culture dish pairs can be combined. Vibrational stimuli generated by the electrodynamic transducers induce a characteristic startle and escape response in the embryos. A belt-driven linear drive sequentially positions a camera above each loudspeaker to record the movement of the embryos. In this way, alterations to the startle response due to lethality or neuromuscular toxicity of chemical compounds can be visualized and quantified. We present an example of the workflow for chemical compound screening using this system, including the preparation of embryos and treatment solutions, operation of the recording system, and data analysis to calculate benchmark concentration values of compounds active in the assay. The modular assembly based on commercially available simple components makes this system both economical and flexibly adaptable to the needs of particular laboratory setups and screening purposes.


Assuntos
Reflexo de Sobressalto , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Vibração , Movimento , Bioensaio , Embrião não Mamífero
2.
Environ Int ; 179: 108169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688811

RESUMO

Epidemiological studies identified air pollution as one of the prime causes for human morbidity and mortality, due to harmful effects mainly on the cardiovascular and respiratory systems. Damage to the lung leads to several severe diseases such as fibrosis, chronic obstructive pulmonary disease and cancer. Noxious environmental aerosols are comprised of a gas and particulate phase representing highly complex chemical mixtures composed of myriads of compounds. Although some critical pollutants, foremost particulate matter (PM), could be linked to adverse health effects, a comprehensive understanding of relevant biological mechanisms and detrimental aerosol constituents is still lacking. Here, we employed a systems toxicology approach focusing on wood combustion, an important source for air pollution, and demonstrate a key role of the gas phase, specifically carbonyls, in driving adverse effects. Transcriptional profiling and biochemical analysis of human lung cells exposed at the air-liquid-interface determined DNA damage and stress response, as well as perturbation of cellular metabolism, as major key events. Connectivity mapping revealed a high similarity of gene expression signatures induced by wood smoke and agents prompting DNA-protein crosslinks (DPCs). Indeed, various gaseous aldehydes were detected in wood smoke, which promote DPCs, initiate similar genomic responses and are responsible for DNA damage provoked by wood smoke. Hence, systems toxicology enables the discovery of critical constituents of complex mixtures i.e. aerosols and highlights the role of carbonyls on top of particulate matter as an important health hazard.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Gases , Humanos , Madeira , Aerossóis e Gotículas Respiratórios , Aldeídos , Material Particulado/toxicidade , Fumaça/efeitos adversos
3.
Cancer Res Commun ; 3(7): 1378-1396, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37520743

RESUMO

The pro-oncogenic activities of estrogen receptor alpha (ERα) drive breast cancer pathogenesis. Endocrine therapies that impair the production of estrogen or the action of the ERα are therefore used to prevent primary disease metastasis. Although recent successes with ERα degraders have been reported, there is still the need to develop further ERα antagonists with additional properties for breast cancer therapy. We have previously described a benzothiazole compound A4B17 that inhibits the proliferation of androgen receptor-positive prostate cancer cells by disrupting the interaction of the cochaperone BAG1 with the AR. A4B17 was also found to inhibit the proliferation of estrogen receptor-positive (ER+) breast cancer cells. Using a scaffold hopping approach, we report here a group of small molecules with imidazopyridine scaffolds that are more potent and efficacious than A4B17. The prototype molecule X15695 efficiently degraded ERα and attenuated estrogen-mediated target gene expression as well as transactivation by the AR. X15695 also disrupted key cellular protein-protein interactions such as BAG1-mortalin (GRP75) interaction as well as wild-type p53-mortalin or mutant p53-BAG2 interactions. These activities together reactivated p53 and resulted in cell-cycle block and the induction of apoptosis. When administered orally to in vivo tumor xenograft models, X15695 potently inhibited the growth of breast tumor cells but less efficiently the growth of prostate tumor cells. We therefore identify X15695 as an oral selective ER degrader and propose further development of this compound for therapy of ER+ breast cancers. Significance: An imidazopyridine that selectively degrades ERα and is orally bioavailable has been identified for the development of ER+ breast cancer therapeutics. This compound also activates wild-type p53 and disrupts the gain-of-function tumorigenic activity of mutant p53, resulting in cell-cycle arrest and the induction of apoptosis.


Assuntos
Neoplasias da Mama , Antagonistas de Estrogênios , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Estrogênios , Receptores de Estrogênio/genética , Proteína Supressora de Tumor p53/genética
4.
Small ; 19(34): e2207593, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098631

RESUMO

For highly abundant silica nanomaterials, detrimental effects on proteins and phospholipids are postulated as critical molecular initiating events that involve hydrogen-bonding, hydrophobic, and/or hydrophilic interactions. Here, large unilamellar vesicles with various well-defined phospholipid compositions are used as biomimetic models to recapitulate membranolysis, a process known to be induced by silica nanoparticles in human cells. Differential analysis of the dominant phospholipids determined in membranes of alveolar lung epithelial cells demonstrates that the quaternary ammonium head groups of phosphatidylcholine and sphingomyelin play a critical and dose-dependent role in vesicle binding and rupture by amorphous colloidal silica nanoparticles. Surface modification by either protein adsorption or by covalent coupling of carboxyl groups suppresses the disintegration of these lipid vesicles, as well as membranolysis in human A549 lung epithelial cells by the silica nanoparticles. Furthermore, molecular modeling suggests a preferential affinity of silanol groups for choline head groups, which is also modulated by the pH value. Biomimetic lipid vesicles can thus be used to better understand specific phospholipid-nanoparticle interactions at the molecular level to support the rational design of safe advanced materials.


Assuntos
Nanopartículas , Fosfolipídeos , Humanos , Fosfolipídeos/química , Lipossomas Unilamelares , Dióxido de Silício/química , Colina , Fosfatidilcolinas/química , Lecitinas , Nanopartículas/química
5.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768249

RESUMO

In recent years, the use of carbon fibers (CFs) in various sectors of industry has been increasing. Despite the similarity of CF degradation products to other toxicologically relevant materials such as asbestos fibers and carbon nanotubes, a detailed toxicological evaluation of this class of material has yet to be performed. In this work, we exposed advanced air-liquid interface cell culture models of the human lung to CF. To simulate different stresses applied to CF throughout their life cycle, they were either mechanically (mCF) or thermo-mechanically pre-treated (tmCF). Different aspects of inhalation toxicity as well as their possible time-dependency were monitored. mCFs were found to induce a moderate inflammatory response, whereas tmCF elicited stronger inflammatory as well as apoptotic effects. Furthermore, thermal treatment changed the surface properties of the CF resulting in a presumed adhesion of the cells to the fiber fragments and subsequent cell loss. Triple-cultures encompassing epithelial, macrophage, and fibroblast cells stood out with an exceptionally high inflammatory response. Only a weak genotoxic effect was detected in the form of DNA strand breaks in mono- and co-cultures, with triple-cultures presenting a possible secondary genotoxicity. This work establishes CF fragments as a potentially harmful material and emphasizes the necessity of further toxicological assessment of existing and upcoming advanced CF-containing materials.


Assuntos
Amianto , Nanotubos de Carbono , Humanos , Fibra de Carbono , Nanotubos de Carbono/toxicidade , Pulmão/metabolismo , Amianto/toxicidade , Técnicas de Cultura de Células
6.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887123

RESUMO

In vitro lung cell models like air-liquid interface (ALI) and 3D cell cultures have advanced greatly in recent years, being especially valuable for testing advanced materials (e.g., nanomaterials, fibrous substances) when considering inhalative exposure. Within this study, we established submerged and ALI cell culture models utilizing A549 cells as mono-cultures and co-cultures with differentiated THP-1 (dTHP-1), as well as mono-cultures of dTHP-1. After ALI and submerged exposures towards α-quartz particles (Min-U-Sil5), with depositions ranging from 15 to 60 µg/cm2, comparison was made with respect to their transcriptional cellular responses employing high-throughput RT-qPCR. A significant dose- and time-dependent induction of genes coding for inflammatory proteins, e.g., IL-1A, IL-1B, IL-6, IL-8, and CCL22, as well as genes associated with oxidative stress response such as SOD2, was observed, even more pronounced in co-cultures. Changes in the expression of similar genes were more pronounced under submerged conditions when compared to ALI exposure in the case of A549 mono-cultures. Hereby, the activation of the NF-κB signaling pathway and the NLRP3 inflammasome seem to play an important role. Regarding genotoxicity, neither DNA strand breaks in ALI cultivated cells nor a transcriptional response to DNA damage were observed. Altogether, the toxicological responses depended considerably on the cell culture model and exposure scenario, relevant to be considered to improve toxicological risk assessment.


Assuntos
Pulmão , Quartzo , Técnicas de Cultura de Células , Técnicas de Cocultura , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Pulmão/metabolismo , Quartzo/toxicidade
7.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742856

RESUMO

The occupational exposure to particles such as crystalline quartz and its impact on the respiratory tract have been studied extensively in recent years. For hazard assessment, the development of physiologically more relevant in-vitro models, i.e., air-liquid interface (ALI) cell cultures, has greatly progressed. Within this study, pulmonary culture models employing A549 and differentiated THP-1 cells as mono-and co-cultures were investigated. The different cultures were exposed to α-quartz particles (Min-U-Sil5) with doses ranging from 15 to 66 µg/cm2 under submerged and ALI conditions and cytotoxicity as well as cytokine release were analyzed. No cytotoxicity was observed after ALI exposure. Contrarily, Min-U-Sil5 was cytotoxic at the highest dose in both submerged mono- and co-cultures. A concentration-dependent release of interleukin-8 was shown for both exposure types, which was overall stronger in co-cultures. Our findings showed considerable differences in the toxicological responses between ALI and submerged exposure and between mono- and co-cultures. A substantial influence of the presence or absence of serum in cell culture media was noted as well. Within this study, the submerged culture was revealed to be more sensitive. This shows the importance of considering different culture and exposure models and highlights the relevance of communication between different cell types for toxicological investigations.


Assuntos
Interleucina-8 , Quartzo , Técnicas de Cultura de Células , Técnicas de Cocultura , Células Epiteliais/metabolismo , Interleucina-8/metabolismo , Pulmão/metabolismo , Quartzo/toxicidade
8.
iScience ; 25(5): 104175, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35479411

RESUMO

BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth.

9.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35328706

RESUMO

Background. Local anesthetics (LAs) have potent anti-inflammatory properties. Inflammatory down-regulation is crucial in diseases with overactive immune reactions, such as acute respiratory distress syndrome (ARDS) and chronic inflammation. We investigated the influence of four LAs, procaine, lidocaine, mepivacaine, and bupivacaine, on the reduction of tumor necrosis factor-alpha (TNF-α) secretion in lipopolysaccharide (LPS)-activated human leucocytes. Methods. Blood samples of 28 individuals were stimulated with LPS. The reduction of TNF-α production by each of the four LAs added (0.5 mg/mL) was measured and correlated with biometric variables. A response was defined as reduction to <85% of initial levels. Results. All four LAs down-regulated the TNF-α secretion in 44−61%: Bupivacaine (44.4%), lidocaine (61.5%), mepivacaine (44.4%), and procaine (50% of the individuals, "responders"). The TNF-α secretion was reduced to 67.4, 68.0, 63.6, and 67.1% of the initial values in responders. The effects in both patients and healthy persons were the same. Interindividual responses to LAs were not correlated with the duration or type of complaints, basal TNF-α serum level, sex, BMI, or age of responders. Conclusions. Four clinically relevant LAs (amid-LA and ester-LA) attenuate the inflammatory response provoked by LPS. They are potential candidates for drug repositioning in treating overactive immune reactions and chronic inflammation.


Assuntos
Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Anestésicos Locais/farmacologia , Anti-Inflamatórios/farmacologia , Bupivacaína/farmacologia , Humanos , Inflamação , Lidocaína/farmacologia , Lipopolissacarídeos/farmacologia , Mepivacaína , Procaína/farmacologia
10.
Nanomaterials (Basel) ; 11(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34947575

RESUMO

Extensive production and use of nanomaterials (NMs), such as titanium dioxide (TiO2), raises concern regarding their potential adverse effects to humans. While considerable efforts have been made to assess the safety of TiO2 NMs using in vitro and in vivo studies, results obtained to date are unreliable, possibly due to the dynamic agglomeration behavior of TiO2 NMs. Moreover, agglomerates are of prime importance in occupational exposure scenarios, but their toxicological relevance remains poorly understood. Therefore, the aim of this study was to investigate the potential pulmonary effects induced by TiO2 agglomerates of different sizes at the air-liquid interface (ALI), which is more realistic in terms of inhalation exposure, and compare it to results previously obtained under submerged conditions. A nano-TiO2 (17 nm) and a non-nano TiO2 (117 nm) was selected for this study. Stable stock dispersions of small agglomerates and their respective larger counterparts of each TiO2 particles were prepared, and human bronchial epithelial (HBE) cells were exposed to different doses of aerosolized TiO2 agglomerates at the ALI. At the end of 4h exposure, cytotoxicity, glutathione depletion, and DNA damage were evaluated. Our results indicate that dose deposition and the toxic potential in HBE cells are influenced by agglomeration and exposure via the ALI induces different cellular responses than in submerged systems. We conclude that the agglomeration state is crucial in the assessment of pulmonary effects of NMs.

11.
Nanomaterials (Basel) ; 11(11)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34835875

RESUMO

It is our great pleasure to introduce this Special Issue entitled "Toxicology and Biocompatibility of Nanomaterials" [...].

12.
Environ Pollut ; 268(Pt A): 115697, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33070067

RESUMO

The influence of pollutants on metabolic diseases such as type 2 diabetes mellitus is an emerging field in environmental medicine. Here, we explored the effects of a low-dose endosulfan sulfate (ES), a major metabolite of the pesticide endosulfan and a bio-persistent contaminant detected in environmental and human samples, on the progress of obesity and metabolic disorders. Pregnant CD-1 mice were given ES from gestational day 6 to postnatal day 21 (short-term). After weaning, male pups of exposed dams were provided with a low-fat or a high-fat diet (LFD or HFD) and assessed after an additional 12 weeks. At the same time, one group of male pups continuously received ES (long-term). Treatment with low-dose ES, short or long-term, alleviated the development of obesity and accumulation of hepatic triglycerides induced by HFD. Analysis of gene expression, metabolic profile and gut microbiome indicates that ES treatment inhibits adipogenesis induced by HFD due to enhanced lipid catabolism, fatty acid oxidation and disturbance of gut microbiota composition. However, impaired glucose and insulin homeostasis were still conserved in HFD-fed mice exposed to ES. Furthermore, ES treatment impaired glucose tolerance, affected hepatic gene expression, fatty acids composition and serum metabolic profile, as well as disturbed gut microbiota in LFD-fed mice. In conclusion, ES treatment at levels close to the accepted daily intake during fetal development directly impact glucose homeostasis, hepatic lipid metabolism, and gut microbiome dependent on the type of diet consumed. These findings provide a better understanding of the complex interactions of environmental pollutants and diet at early life stages also in the context of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Endossulfano/análogos & derivados , Glucose , Homeostase , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL
13.
Nanomaterials (Basel) ; 10(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707981

RESUMO

The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.

14.
ACS Nano ; 14(6): 6383-6406, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32519842

RESUMO

The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Nanotecnologia/métodos , Pandemias , Pneumonia Viral , Betacoronavirus/genética , Betacoronavirus/imunologia , Biomimética , COVID-19 , Vacinas contra COVID-19 , Simulação por Computador , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Desinfecção , Sistemas de Liberação de Medicamentos , Microbiologia Ambiental , Humanos , Imunomodulação , Máscaras , Nanomedicina , Nanotecnologia/tendências , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Fotoquimioterapia , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , SARS-CoV-2 , Vacinas Virais/genética , Vacinas Virais/farmacologia
15.
Part Fibre Toxicol ; 17(1): 27, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539833

RESUMO

BACKGROUND: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques. METHODS: We used three different ALI exposure systems in parallel to study the toxicological effects of spruce and pine combustion emissions in human alveolar epithelial (A549) and murine macrophage (RAW264.7) cell lines. A whole-body mouse inhalation system was also used to expose C57BL/6 J mice to aerosol emissions. Moreover, gaseous and particulate fractions were studied separately in one of the cell exposure systems. After exposure, the cells and animals were measured for various parameters of cytotoxicity, inflammation, genotoxicity, transcriptome and proteome. RESULTS: We found that diluted (1:15) exposure pine combustion emissions (PM1 mass 7.7 ± 6.5 mg m- 3, 41 mg MJ- 1) contained, on average, more PM and polycyclic aromatic hydrocarbons (PAHs) than spruce (PM1 mass 4.3 ± 5.1 mg m- 3, 26 mg MJ- 1) emissions, which instead showed a higher concentration of inorganic metals in the emission aerosol. Both A549 cells and mice exposed to these emissions showed low levels of inflammation but significantly increased genotoxicity. Gaseous emission compounds produced similar genotoxicity and a higher inflammatory response than the corresponding complete combustion emission in A549 cells. Systems biology approaches supported the findings, but we detected differing responses between in vivo and in vitro experiments. CONCLUSIONS: Comprehensive in vitro and in vivo exposure studies with emission characterization and systems biology approaches revealed further information on the effects of combustion aerosol toxicity than could be achieved with either method alone. Interestingly, in vitro and in vivo exposures showed the opposite order of the highest DNA damage. In vitro measurements also indicated that the gaseous fraction of emission aerosols may be more important in causing adverse toxicological effects. Combustion aerosols of different wood species result in mild but aerosol specific in vitro and in vivo effects.


Assuntos
Poluentes Atmosféricos/toxicidade , Dano ao DNA , Exposição por Inalação/efeitos adversos , Picea/química , Pinus/química , Fumaça/efeitos adversos , Madeira , Células A549 , Aerossóis , Poluentes Atmosféricos/análise , Animais , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Calefação , Humanos , Exposição por Inalação/análise , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Células RAW 264.7 , Fumaça/análise , Especificidade da Espécie , Transcriptoma/efeitos dos fármacos
16.
Nanomaterials (Basel) ; 10(2)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098406

RESUMO

Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.

17.
ACS Nano ; 14(2): 1665-1681, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31922724

RESUMO

Despite the common knowledge that the reticuloendothelial system is largely responsible for blood clearance of systemically administered nanoparticles, the sequestration mechanism remains a "black box". Using transgenic zebrafish embryos with cell type-specific fluorescent reporters and fluorescently labeled model nanoparticles (70 nm SiO2), we here demonstrate simultaneous three-color in vivo imaging of intravenously injected nanoparticles, macrophages, and scavenger endothelial cells (SECs). The trafficking processes were further revealed at ultrastructural resolution by transmission electron microscopy. We also find, using a correlative light-electron microscopy approach, that macrophages rapidly sequester nanoparticles via membrane adhesion and endocytosis (including macropinocytosis) within minutes after injection. In contrast, SECs trap single nanoparticles via scavenger receptor-mediated endocytosis, resulting in gradual sequestration with a time scale of hours. Inhibition of the scavenger receptors prevented SECs from accumulating nanoparticles but enhanced uptake in macrophages, indicating the competitive nature of nanoparticle clearance in vivo. To directly quantify the relative contributions of the two cell types to overall nanoparticle sequestration, the differential sequestration kinetics was studied within the first 30 min post-injection. This revealed a much higher and increasing relative contribution of SECs, as they by far outnumber macrophages in zebrafish embryos, suggesting the importance of the macrophage:SECs ratio in a given tissue. Further characterizing macrophages on their efficiency in nanoparticle clearance, we show that inflammatory stimuli diminish the uptake of nanoparticles per cell. Our study demonstrates the strength of transgenic zebrafish embryos for intravital real-time and ultrastructural imaging of nanomaterials that may provide mechanistic insights into nanoparticle clearance in rodent models and humans.


Assuntos
Células Endoteliais/química , Macrófagos/química , Nanopartículas/metabolismo , Dióxido de Silício/metabolismo , Animais , Células Endoteliais/metabolismo , Cinética , Macrófagos/metabolismo , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície , Fatores de Tempo , Peixe-Zebra/embriologia
18.
Nanomaterials (Basel) ; 11(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383962

RESUMO

Reliable and predictive in vitro assays for hazard assessments of manufactured nanomaterials (MNMs) are still limited. Specifically, exposure systems which more realistically recapitulate the physiological conditions in the lung are needed to predict pulmonary toxicity. To this end, air-liquid interface (ALI) systems have been developed in recent years which might be better suited than conventional submerged exposure assays. However, there is still a need for rigorous side-by-side comparisons of the results obtained with the two different exposure methods considering numerous parameters, such as different MNMs, cell culture models and read outs. In this study, human A549 lung epithelial cells and differentiated THP-1 macrophages were exposed under submerged conditions to two abundant types of MNMs i.e., ceria and titania nanoparticles (NPs). Membrane integrity, metabolic activity as well as pro-inflammatory responses were recorded. For comparison, A549 monocultures were also exposed at the ALI to the same MNMs. In the case of titania NPs, genotoxicity was also investigated. In general, cells were more sensitive at the ALI compared to under classical submerged conditions. Whereas ceria NPs triggered only moderate effects, titania NPs clearly initiated cytotoxicity, pro-inflammatory gene expression and genotoxicity. Interestingly, low doses of NPs deposited at the ALI were sufficient to drive adverse outcomes, as also documented in rodent experiments. Therefore, further development of ALI systems seems promising to refine, reduce or even replace acute pulmonary toxicity studies in animals.

19.
Nanomaterials (Basel) ; 9(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426331

RESUMO

Several in vitro studies have suggested that silica nanoparticles (NPs) might induce adverse effects in gut cells. Here, we used the human colon cancer epithelial cell line HCT116 to study the potential cytotoxic effects of ingested silica NPs in the presence or absence of serum. Furthermore, we evaluated different physico-chemical parameters important for the assessment of nanoparticle safety, including primary particle size (12, 70, 200, and 500 nm) and surface modification (-NH2 and -COOH). Silica NPs triggered cytotoxicity, as evidenced by reduced metabolism and enhanced membrane leakage. Automated microscopy revealed that the silica NPs promoted apoptosis and necrosis proportional to the administered specific surface area dose. Cytotoxicity of silica NPs was suppressed by increasing amount of serum and surface modification. Furthermore, inhibition of caspases partially prevented silica NP-induced cytotoxicity. In order to investigate the role of specific cell death pathways in more detail, we used isogenic derivatives of HCT116 cells which lack the pro-apoptotic proteins p53 or BAX. In contrast to the anticancer drug cisplatin, silica NPs induced cell death independent of the p53-BAX axis. In conclusion, silica NPs initiated cell death in colon cancer cells dependent on the specific surface area and presence of serum. Further studies in vivo are warranted to address potential cytotoxic actions in the gut epithelium. The unintended toxicity of silica NPs as observed here could also be beneficial. As loss of p53 in colon cancer cells contributes to resistance against anticancer drugs, and thus to reoccurrence of colon cancer, targeted delivery of silica NPs could be envisioned to also deplete p53 deficient tumor cells.

20.
Arch Toxicol ; 93(4): 871-885, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30838431

RESUMO

Engineered amorphous silica nanoparticles (nanosilica) are one of the most abundant nanomaterials and are widely used in industry. Furthermore, novel nanosilica materials are promising theranostic tools for biomedicine. However, hazardous effects of nanosilica especially after inhalation into the lung have been documented. Therefore, the safe development of nanosilica materials urgently requires predictive assays to monitor toxicity. Here, we further investigate the impact of the protein corona on the biological activity of two different types of nanosilica (colloidal and pyrogenic) in lung cells. As previously described, adsorption of serum proteins to the nanosilica surface suppresses cytotoxicity in macrophages and lung epithelial cells. As the increase of pro-inflammatory mediators is a hallmark of inflammation in the lung upon nanosilica exposure, we studied the potential coupling of the cytotoxic and pro-inflammatory response in A549 human lung epithelial cells and RAW264.7 mouse macrophages. Indeed, cytotoxicity precedes the onset of pro-inflammatory gene expression and cytokine release as exemplified for IL-8 in A549 cells and TNF-alpha in RAW264.7 macrophages after exposure to 0-100 µg/mL nanosilica in medium without serum. Formation of a protein corona not only inhibited cellular toxicity, but also the pro-inflammatory response. Of note, uptake of nanosilica into cells was negligible in the absence, but enhanced in the presence of a protein corona. Hence, the prevailing explanation that the protein corona simply interferes with cellular uptake thus preventing adverse effects needs to be revisited. In conclusion, for the reliable prediction of adverse effects of nanosilica in the lung, in vitro assays should be performed in media not complemented with complete serum. However, in case of different exposure routes, e.g., injection into the blood stream as intended for biomedicine, the protein corona prevents acute toxic actions of nanosilica.


Assuntos
Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Nanopartículas/toxicidade , Coroa de Proteína/metabolismo , Dióxido de Silício/toxicidade , Células A549 , Adsorção , Animais , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Nanopartículas/química , Tamanho da Partícula , Células RAW 264.7 , Dióxido de Silício/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...