Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11680, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468564

RESUMO

In recent years, significant progress has been made in laser wakefield acceleration (LWFA), both regarding the increase in electron energy, charge and stability as well as the reduction of bandwidth of electron bunches. Simultaneous optimization of these parameters is, however, still the subject of an ongoing effort in the community to reach sufficient beam quality for next generation's compact accelerators. In this report, we show the design of slit-shaped gas nozzles providing centimeter-long supersonic gas jets that can be used as targets for the acceleration of electrons to the GeV regime. In LWFA experiments at the Centre for Advanced Laser Applications, we show that electron bunches are accelerated to [Formula: see text] using these nozzles. The electron bunches were injected into the laser wakefield via a laser-machined density down-ramp using hydrodynamic optical-field-ionization and subsequent plasma expansion on a ns-timescale. This injection method provides highly controllable quasi-monoenergetic electron beams with high charge around [Formula: see text], low divergence of [Formula: see text], and a relatively small energy spread of around [Formula: see text] at [Formula: see text]. In contrast to capillaries and gas cells, the scheme allows full plasma access for injection, probing or guiding in order to further improve the energy and quality of LWFA beams.

2.
Opt Express ; 31(12): 19733-19745, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381382

RESUMO

Knowledge of spatio-temporal couplings such as pulse-front tilt or curvature is important to determine the focused intensity of high-power lasers. Common techniques to diagnose these couplings are either qualitative or require hundreds of measurements. Here we present both a new algorithm for retrieving spatio-temporal couplings, as well as novel experimental implementations. Our method is based on the expression of the spatio-spectral phase in terms of a Zernike-Taylor basis, allowing us to directly quantify the coefficients for common spatio-temporal couplings. We take advantage of this method to perform quantitative measurements using a simple experimental setup, consisting of different bandpass filters in front of a Shack-Hartmann wavefront sensor. This fast acquisition of laser couplings using narrowband filters, abbreviated FALCON, is easy and cheap to implement in existing facilities. To this end, we present a measurement of spatio-temporal couplings at the ATLAS-3000 petawatt laser using our technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...