Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 7(9): 4463-4473, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34387486

RESUMO

Bone fractures are in need of rapid fixation methods, but the current strategies are limited to metal pins and screws, which necessitate secondary surgeries upon removal. New techniques are sought to avoid surgical revisions, while maintaining or improving the fixation speed. Herein, a method of bone fixation is proposed with transparent biopolymers anchored in place via light-activated biocomposites based on expanding CaproGlu bioadhesives. The transparent biopolymers serve as a UV light guide for the activation of CaproGlu biocomposites, which results in evolution of molecular nitrogen (from diazirine photolysis), simultaneously expanding the covalently cross-linked matrix. Osseointegration additives of hydroxyapatite or Bioglass 45S5 yield a biocomposite matrix with increased stiffness and pullout strength. The structure-property relationships of UV joules dose, pin diameter, and biocomposite additives are assessed with respect to the apparent viscosity, shear modulus, spatiotemporal pin curing, and lap-shear adhesion. Finally, a model system is proposed based on ex vivo investigation with bone tissue for the exploration and optimization of UV-active transparent biopolymer fixation.


Assuntos
Pinos Ortopédicos , Fraturas Ósseas , Diazometano , Durapatita , Fraturas Ósseas/cirurgia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA