Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 5(3): 879-886, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32103665

RESUMO

Tracking and analyzing the individual diffusion of nanoscale objects such as proteins and viruses is an important methodology in life science. Here, we show a sensor that combines the efficiency of light line illumination with the advantages of fluidic confinement. Tracking of freely diffusing nano-objects inside water-filled hollow core fibers with core diameters of tens of micrometers using elastically scattered light from the core mode allows retrieving information about the Brownian motion and the size of each particle of the investigated ensemble individually using standard tracking algorithms and the mean squared displacement analysis. Specifically, we successfully measure the diameter of every gold nanosphere in an ensemble that consists of several hundreds of 40 nm particles, with an individual precision below 17% (±8 nm). In addition, we confirm the relevance of our approach with respect to bioanalytics by analyzing 70 nm λ-phages. Overall these features, together with the strongly reduced demand for memory space, principally allows us to record thousands of frames and to achieve high frame rates for high precision tracking of nanoscale objects.


Assuntos
Ouro , Nanopartículas Metálicas , Movimento (Física) , Nanosferas , Bacteriófago lambda , Difusão
2.
Nanoscale ; 12(5): 3146-3156, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31967162

RESUMO

Understanding the dynamics of single nano-scale species at high spatiotemporal resolution is of utmost importance within fields such as bioanalytics or microrheology. Here we introduce the concept of axial position retrieval via scattered light at evanescent fields inside a corralled geometry using optofluidic microstructured optical fibers allowing to unlock information about diffusing nano-scale objects in all three spatial dimensions at kHz acquisition rate for several seconds. Our method yields the lateral positions by localizing the particle in a wide-field microscopy image. In addition, the axial position is retrieved via the scattered light intensity of the particle, as a result of the homogenized evanescent fields inside a microchannel running parallel to an optical core. This method yields spatial localization accuracies <3 nm along the transverse and <21 nm along the retrieved directions. Due to its unique properties such as three dimensional tracking, straightforward operation, mechanical flexibility, strong confinement, fast and efficient data recording, long observation times, low background scattering, and compatibility with microscopy and fiber circuitry, our concept represents a new paradigm in light-based nanoscale detection techniques, extending the capabilities of the field of nanoparticle tracking analysis and potentially allowing for the observation of so far inaccessible processes at the nanoscale level.

3.
Opt Express ; 27(25): 36221-36230, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873405

RESUMO

Confinement in fiber traps with two optical fibers facing one another relies on balancing the optical forces originating from the interaction of a scattering micro-object with the light beams delivered through the fibers. Here we demonstrate a novel type of dual fiber trap that involves the use of nanobore fibers, having a nano-channel located in the center of their fiber cores. This nano-element leads to a profound redistribution of the optical intensity and to considerably higher field gradients, yielding a trapping potential with greatly improved tuning properties compared to standard step-index fiber types. We evaluate the trap performance as a function of the fiber separation and find substantially higher stiffness for the nanobore fiber trap, especially in the range of short inter-fiber separations, while intermediate distances exhibit axial stiffness below that of the standard fiber. The results are in agreement with theoretical predictions and reveal that the exploitation of nanobore fibers allows for combinations of transverse and axial stiffness that cannot be accessed with common step-index fibers.

4.
Opt Lett ; 43(17): 4192-4195, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160749

RESUMO

The nano-bore optical fiber geometry represents a new waveguide platform that uniquely allows studying the interaction of low-index fluids and light inside the core of an optical fiber while maintaining total internal reflection as a light guidance mechanism. Here, we have analyzed several application-relevant properties of this novel geometry experimentally and from the simulation perspective, including the analysis of the power fraction inside the bore, the determination of radius-dependent cutoffs, and the identification of single-mode operation domains. The obtained results will pave the way for new application of fiber optics in fields such as optofluidics, nonlinear light generation, and bioanalytics.

5.
Opt Express ; 26(24): 31706-31716, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650753

RESUMO

Focusing light represents one of the fundamental optical functionalities that is used in a countless number of situations. Here we introduce the concept of nano-bore optical fiber mediated light focusing that allows to efficiently focus light at micrometer distance from the fiber end face. Since the focusing effect is provided by the fundamental fiber mode, device implementation is extremely straightforward since no post-processing or nano-structuring is necessary. Far-field measurements on implemented fibers, simulations, and a dual-Gaussian beam toy model confirm the validity of the concept. Due to its unique properties such as strong light localization, a close to 100% implementation success rate, extremely high reproducibility, and its compatibility with current fiber circuitry, the concept will find application in numerous areas that demand to focus at remote distances.

6.
Nano Lett ; 17(2): 631-637, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-27983862

RESUMO

We propose and experimentally demonstrate a monolithic nanowire-enhanced fiber-based nanoprobe for the broadband delivery of light (550-730 nm) to a deep subwavelength scale using short-range surface plasmons. The geometry is formed by a step index fiber with an integrated gold nanowire in its core and a protruding gold nanotip with sub-10 nm apex radius. We present a novel coupling scheme to excite short-range surface plasmons, whereby the radially polarized hybrid mode propagating inside the nanowire section excites the plasmonic mode close to the fiber endface, which is in turn superfocused down to nanoscale dimensions at the tip apex. We show that in this all-integrated fiber-plasmonic coupling scheme the wire length can be orders of magnitude longer than the attenuation length of short-range plasmon polaritons, yielding a broadband plasmon excitation and reducing demands in fabrication. We observe that the scattered light in the far-field from the nanotip is axially polarized and preferentially excited by a radially polarized input, unambiguously revealing that it originates from a short-range plasmon propagating on the nanotip, in agreement with simulations. This novel excitation scheme will have important applications in near-field microscopy and nanophotonics and potentially offers significantly improved resolution compared to current delivery near-field probes.

7.
Faraday Discuss ; 193: 447-458, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711894

RESUMO

We introduce nanoCapillary Electrokinetic Tracking (nanoCET), an optofluidic platform for continuously measuring the electrophoretic mobility of a single colloidal nanoparticle or macromolecule in vitro with millisecond time resolution and high charge sensitivity. This platform is based on using a nanocapillary optical fiber in which liquids may flow inside a channel embedded inside the light-guiding core and nanoparticles are tracked using elastic light scattering. Using this platform we have experimentally measured the electrophoretic mobility of 60 nm gold nanoparticles in an aqueous environment. Further, using numerical simulations, we demonstrate the underlying electrokinetic dynamics inside the nanocapillary and the necessary steps for extending this method to probing single biomolecules, which can be achieved with existing technologies. This achievement will immensely facilitate the daunting challenge of monitoring biochemical or catalytic reactions on a single entity over a wide range of timescales. The unique measurement capabilities of this platform pave the way for a wide range of discoveries in colloid science, analytical biochemistry, and medical diagnostics.

8.
Opt Lett ; 41(3): 448-51, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907394

RESUMO

We show broadband azimuthal polarization state conversion using an entirely connectorized step-index fiber with a central gold nanowire. This device provides broadband polarization discrimination of the low-loss TE01 fiber mode with respect to all other modes, and converts light into the azimuthal polarization state, resulting in a high beam quality and an azimuthal conversion efficiency of 37%. The device is monolithically integrated into fiber circuitry, representing a new platform for plasmonics and fiber optics and enabling important applications in super-resolution microscopy, laser tweezing, and plasmonic superfocussing.

9.
ACS Nano ; 9(12): 12349-57, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26505649

RESUMO

High-speed tracking of single particles is a gateway to understanding physical, chemical, and biological processes at the nanoscale. It is also a major experimental challenge, particularly for small, nanometer-scale particles. Although methods such as confocal or fluorescence microscopy offer both high spatial resolution and high signal-to-background ratios, the fluorescence emission lifetime limits the measurement speed, while photobleaching and thermal diffusion limit the duration of measurements. Here we present a tracking method based on elastic light scattering that enables long-duration measurements of nanoparticle dynamics at rates of thousands of frames per second. We contain the particles within a single-mode silica fiber having a subwavelength, nanofluidic channel and illuminate them using the fiber's strongly confined optical mode. The diffusing particles in this cylindrical geometry are continuously illuminated inside the collection focal plane. We show that the method can track unlabeled dielectric particles as small as 20 nm as well as individual cowpea chlorotic mottle virus (CCMV) virions-26 nm in size and 4.6 megadaltons in mass-at rates of over 3 kHz for durations of tens of seconds. Our setup is easily incorporated into common optical microscopes and extends their detection range to nanometer-scale particles and macromolecules. The ease-of-use and performance of this technique support its potential for widespread applications in medical diagnostics and micro total analysis systems.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Nanofibras/química , Nanopartículas/análise , Nanotecnologia/instrumentação , Fibras Ópticas , Vírus/isolamento & purificação , Virologia/instrumentação , Virologia/métodos , Vírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA