Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1174537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600805

RESUMO

Introduction: Typical Western diet, rich in salt, contributes to autoimmune disease development. However, conflicting reports exist about the effect of salt on neutrophil effector functions, also in the context of arthritis. Methods: We investigated the effect of sodium chloride (NaCl) on neutrophil viability and functions in vitro, and in vivo employing the murine K/BxN-serum transfer arthritis (STA) model. Results and discussion: The effects of NaCl and external reactive oxygen species (H2O2) were further examined on osteoclasts in vitro. Hypertonic sodium-rich media caused primary/secondary cell necrosis, altered the nuclear morphology, inhibited phagocytosis, degranulation, myeloperoxidase (MPO) peroxidation activity and neutrophil extracellular trap (NET) formation, while increasing total ROS production, mitochondrial ROS production, and neutrophil elastase (NE) activity. High salt diet (HSD) aggravated arthritis by increasing inflammation, bone erosion, and osteoclast differentiation, accompanied by increased NE expression and activity. Osteoclast differentiation was decreased with 25 mM NaCl or 100 nM H2O2 addition to isotonic media. In contrast to NaCl, external H2O2 had pro-resorptive effects in vitro. We postulate that in arthritis under HSD, increased bone erosion can be attributed to an enhanced oxidative milieu maintained by infiltrating neutrophils, rather than a direct effect of NaCl.


Assuntos
Artrite , Sódio , Animais , Camundongos , Cloreto de Sódio/farmacologia , Neutrófilos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Estresse Oxidativo , Cloreto de Sódio na Dieta
2.
Arthritis Rheumatol ; 75(4): 517-532, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36245290

RESUMO

OBJECTIVE: We have recently shown that priming of synovial fibroblasts (SFs) drives arthritis flares. Pathogenic priming of SFs is essentially mediated by epigenetic reprogramming. Bromodomain and extraterminal motif (BET) proteins translate epigenetic changes into transcription. Here, we used a BET inhibitor (I-BET151) to target inflammatory tissue priming and to reduce flare severity in a murine experimental arthritis model. METHODS: BALB/c mice were treated by intraperitoneal injection or by local injection in the paw with I-BET151, which blocks the interaction of BET proteins with acetylated histones. We assessed the effects of I-BET151 on acute arthritis and/or inflammatory tissue priming in a model of repeated injections of monosodium urate crystals or zymosan into the mouse paw. I-BET151 was given before arthritis induction, at peak inflammation, or after healing of the first arthritis bout. We performed transcriptomic (RNA-Seq), epigenomic (ATAC-Seq), and functional (invasion, cytokine production, migration, senescence, metabolic flux) analyses of murine and human SFs treated with I-BET151 in vitro or in vivo. RESULTS: Systemic I-BET151 administration did not affect acute inflammation but abolished inflammatory tissue priming and diminished flare severity in both preventive and therapeutic treatment settings. I-BET151 was also effective when applied locally in the joint. BET inhibition also inhibited osteoclast differentiation, while macrophage activation in the joint was not affected. Flare reduction after BET inhibition was mediated, at least in part, by rolling back the primed transcriptional, metabolic, and pathogenic phenotype of SFs. CONCLUSION: Inflammatory tissue priming is dependent on transcriptional regulation by BET proteins, making them promising therapeutic targets for prevention of arthritis flares in previously affected joints.


Assuntos
Artrite , Proteínas Nucleares , Camundongos , Humanos , Animais , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Exacerbação dos Sintomas , Artrite/tratamento farmacológico , Inflamação
3.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33761330

RESUMO

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Assuntos
Proteínas do Sistema Complemento/imunologia , Fibroblastos/imunologia , Inflamação/imunologia , Membrana Sinovial/imunologia , Imunidade Adaptativa/imunologia , Animais , Artrite Reumatoide/imunologia , Linhagem Celular , Cães , Humanos , Mediadores da Inflamação/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos Wistar , Transdução de Sinais/imunologia
4.
Cells ; 9(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971767

RESUMO

Salivary gland stones, or sialoliths, are the most common cause of the obstruction of salivary glands. The mechanism behind the formation of sialoliths has been elusive. Symptomatic sialolithiasis has a prevalence of 0.45% in the general population, is characterized by recurrent painful periprandial swelling of the affected gland, and often results in sialadenitis with the need for surgical intervention. Here, we show by the use of immunohistochemistry, immunofluorescence, computed tomography (CT) scans and reconstructions, special dye techniques, bacterial genotyping, and enzyme activity analyses that neutrophil extracellular traps (NETs) initiate the formation and growth of sialoliths in humans. The deposition of neutrophil granulocyte extracellular DNA around small crystals results in the dense aggregation of the latter, and the subsequent mineralization creates alternating layers of dense mineral, which are predominantly calcium salt deposits and DNA. The further agglomeration and appositional growth of these structures promotes the development of macroscopic sialoliths that finally occlude the efferent ducts of the salivary glands, causing clinical symptoms and salivary gland dysfunction. These findings provide an entirely novel insight into the mechanism of sialolithogenesis, in which an immune system-mediated response essentially participates in the physicochemical process of concrement formation and growth.


Assuntos
Cálcio/metabolismo , Armadilhas Extracelulares/imunologia , Neutrófilos/patologia , Cálculos das Glândulas Salivares/patologia , Glândulas Salivares/patologia , Sialadenite/patologia , Adulto , Biomarcadores/metabolismo , Cálcio/química , Estudos de Coortes , DNA/genética , DNA/metabolismo , Feminino , Expressão Gênica , Humanos , Processamento de Imagem Assistida por Computador , Elastase de Leucócito/genética , Elastase de Leucócito/imunologia , Litotripsia , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Cálculos das Glândulas Salivares/diagnóstico por imagem , Cálculos das Glândulas Salivares/imunologia , Cálculos das Glândulas Salivares/cirurgia , Glândulas Salivares/diagnóstico por imagem , Glândulas Salivares/imunologia , Glândulas Salivares/cirurgia , Sialadenite/diagnóstico por imagem , Sialadenite/imunologia , Sialadenite/cirurgia , Ultrassonografia , Microtomografia por Raio-X
5.
J Clin Invest ; 130(9): 4811-4830, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773408

RESUMO

Although the control of bone-resorbing osteoclasts through osteocyte-derived RANKL is well defined, little is known about the regulation of osteoclasts by osteocyte death. Indeed, several skeletal diseases, such as bone fracture, osteonecrosis, and inflammation are characterized by excessive osteocyte death. Herein we show that osteoclasts sense damage-associated molecular patterns (DAMPs) released by necrotic osteocytes via macrophage-inducible C-type lectin (Mincle), which induced their differentiation and triggered bone loss. Osteoclasts showed robust Mincle expression upon exposure to necrotic osteocytes in vitro and in vivo. RNA sequencing and metabolic analyses demonstrated that Mincle activation triggers osteoclastogenesis via ITAM-based calcium signaling pathways, skewing osteoclast metabolism toward oxidative phosphorylation. Deletion of Mincle in vivo effectively blocked the activation of osteoclasts after induction of osteocyte death, improved fracture repair, and attenuated inflammation-mediated bone loss. Furthermore, in patients with osteonecrosis, Mincle was highly expressed at skeletal sites of osteocyte death and correlated with strong osteoclastic activity. Taken together, these data point to what we believe is a novel DAMP-mediated process that allows osteoclast activation and bone loss in the context of osteocyte death.


Assuntos
Reabsorção Óssea/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Osteoclastos/metabolismo , Osteócitos/metabolismo , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Lectinas Tipo C/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Necrose , Osteoclastos/patologia , Osteócitos/patologia , RNA-Seq
6.
Sci Transl Med ; 12(530)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051226

RESUMO

Janus kinase (JAK)-mediated cytokine signaling has emerged as an important therapeutic target for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). Accordingly, JAK inhibitors compose a new class of drugs, among which tofacitinib and baricitinib have been approved for the treatment of RA. Periarticular bone erosions contribute considerably to the pathogenesis of RA. However, although the immunomodulatory aspect of JAK inhibition (JAKi) is well defined, the current knowledge of how JAKi influences bone homeostasis is limited. Here, we assessed the effects of the JAK inhibitors tofacitinib and baricitinib on bone phenotype (i) in mice during steady-state conditions or in mice with bone loss induced by (ii) estrogen-deficiency (ovariectomy) or (iii) inflammation (arthritis) to evaluate whether effects of JAKi on bone metabolism require noninflammatory/inflammatory challenge. In all three models, JAKi increased bone mass, consistent with reducing the ratio of receptor activator of NF-κB ligand/osteoprotegerin in serum. In vitro, effects of tofacitinib and baricitinib on osteoclast and osteoblast differentiation were analyzed. JAKi significantly increased osteoblast function (P < 0.05) but showed no direct effects on osteoclasts. Additionally, mRNA sequencing and ingenuity pathway analyses were performed in osteoblasts exposed to JAKi and revealed robust up-regulation of markers for osteoblast function, such as osteocalcin and Wnt signaling. The anabolic effect of JAKi was illustrated by the stabilization of ß-catenin. In humans with RA, JAKi induced bone-anabolic effects as evidenced by repair of arthritic bone erosions. Results support that JAKi is a potent therapeutic tool for increasing osteoblast function and bone formation.


Assuntos
Artrite Reumatoide , Inibidores de Janus Quinases , Animais , Diferenciação Celular , Janus Quinases , Camundongos , Osteoblastos , Osteoclastos
7.
Nat Metab ; 1(2): 236-250, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-31620676

RESUMO

Closed circulatory systems (CCS) underlie the function of vertebrate organs, but in long bones their structure is unclear, although they constitute the exit route for bone marrow (BM) leukocytes. To understand neutrophil emigration from BM, we studied the vascular system of murine long bones. Here we show that hundreds of capillaries originate in BM, cross murine cortical bone perpendicularly along the shaft and connect to the periosteal circulation. Structures similar to these trans-cortical-vessels (TCVs) also exist in human limb bones. TCVs express arterial or venous markers and transport neutrophils. Furthermore, over 80% arterial and 59% venous blood passes through TCVs. Genetic and drug-mediated modulation of osteoclast count and activity leads to substantial changes in TCV numbers. In a murine model of chronic arthritic bone inflammation, new TCVs develop within weeks. Our data indicate that TCVs are a central component of the CCS in long bones and may represent an important route for immune cell export from the BM.


Assuntos
Osso e Ossos/irrigação sanguínea , Capilares/fisiologia , Microcirculação , Fluxo Sanguíneo Regional , Animais , Medula Óssea/irrigação sanguínea , Humanos , Camundongos , Camundongos Endogâmicos DBA
8.
Nature ; 572(7771): 670-675, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391580

RESUMO

Macrophages are considered to contribute to chronic inflammatory diseases such as rheumatoid arthritis1. However, both the exact origin and the role of macrophages in inflammatory joint disease remain unclear. Here we use fate-mapping approaches in conjunction with three-dimensional light-sheet fluorescence microscopy and single-cell RNA sequencing to perform a comprehensive spatiotemporal analysis of the composition, origin and differentiation of subsets of macrophages within healthy and inflamed joints, and study the roles of these macrophages during arthritis. We find that dynamic membrane-like structures, consisting of a distinct population of CX3CR1+ tissue-resident macrophages, form an internal immunological barrier at the synovial lining and physically seclude the joint. These barrier-forming macrophages display features that are otherwise typical of epithelial cells, and maintain their numbers through a pool of locally proliferating CX3CR1- mononuclear cells that are embedded into the synovial tissue. Unlike recruited monocyte-derived macrophages, which actively contribute to joint inflammation, these epithelial-like CX3CR1+ lining macrophages restrict the inflammatory reaction by providing a tight-junction-mediated shield for intra-articular structures. Our data reveal an unexpected functional diversification among synovial macrophages and have important implications for the general role of macrophages in health and disease.


Assuntos
Articulações/citologia , Macrófagos/citologia , Macrófagos/fisiologia , Membrana Sinovial/citologia , Sinoviócitos/citologia , Sinoviócitos/fisiologia , Junções Íntimas/fisiologia , Animais , Artrite/imunologia , Artrite/patologia , Receptor 1 de Quimiocina CX3C/análise , Receptor 1 de Quimiocina CX3C/metabolismo , Rastreamento de Células , Feminino , Perfilação da Expressão Gênica , Humanos , Inflamação/imunologia , Inflamação/patologia , Articulações/patologia , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , RNA-Seq , Análise de Célula Única , Sinoviócitos/classificação , Sinoviócitos/metabolismo , Transcriptoma/genética
9.
FASEB J ; 33(1): 1401-1414, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130433

RESUMO

Papillon-Lefèvre syndrome (PLS) is characterized by nonfunctional neutrophil serine proteases (NSPs) and fulminant periodontal inflammation of unknown cause. Here we investigated neutrophil extracellular trap (NET)-associated aggregation and cytokine/chemokine-release/degradation by normal and NSP-deficient human and mouse granulocytes. Stimulated with solid or soluble NET inducers, normal neutrophils formed aggregates and both released and degraded cytokines/chemokines. With increasing cell density, proteolytic degradation outweighed release. Maximum output of cytokines/chemokines occurred mostly at densities between 2 × 107 and 4 × 107 neutrophils/cm3. Assessment of neutrophil density in vivo showed that these concentrations are surpassed during inflammation. Association with aggregated NETs conferred protection of neutrophil elastase against α1-antitrypsin. In contrast, eosinophils did not influence cytokine/chemokine concentrations. The proteolytic degradation of inflammatory mediators seen in NETs was abrogated in Papillon-Lefèvre syndrome (PLS) neutrophils. In summary, neutrophil-driven proteolysis of inflammatory mediators works as a built-in safeguard for inflammation. The absence of this negative feedback mechanism might be responsible for the nonresolving periodontitis seen in PLS.-Hahn, J., Schauer, C., Czegley, C., Kling, L., Petru, L., Schmid, B., Weidner, D., Reinwald, C., Biermann, M. H. C., Blunder, S., Ernst, J., Lesner, A., Bäuerle, T., Palmisano, R., Christiansen, S., Herrmann, M., Bozec, A., Gruber, R., Schett, G., Hoffmann, M. H. Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Armadilhas Extracelulares/metabolismo , Inflamação/prevenção & controle , Neutrófilos/metabolismo , Inibidores de Proteases/metabolismo , Adolescente , Adulto , Animais , Humanos , Mediadores da Inflamação/metabolismo , Ionomicina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NADPH Oxidases/genética , Neutrófilos/efeitos dos fármacos , Periodontite/metabolismo , Proteólise , Acetato de Tetradecanoilforbol/farmacologia , Ácido Úrico/farmacologia
10.
J Bone Miner Res ; 33(11): 2035-2047, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29949664

RESUMO

NR4A1 (Nur77 or NGFI-B), an orphan member of the nuclear receptor superfamily, has been identified as a key regulator of the differentiation and function of myeloid, lymphoid, and mesenchymal cells. The detailed role of NR4A1 in bone biology is incompletely understood. Here, we report a role for NR4A1 as novel factor controlling the migration and recruitment of osteoclast precursors during bone remodeling. Myeloid-specific but not osteoblast-specific deletion of NR4A1 resulted in osteopenia due to an increase in the number of bone-lining osteoclasts. Although NR4A1-deficient osteoclast precursors displayed a regular differentiation into mature osteoclasts, they showed a hyper-motile phenotype that was largely dependent on increased osteopontin expression, suggesting that expression of NR4A1 negatively controlled osteopontin-mediated recruitment of osteoclast precursors to the trabecular bone. Pharmacological activation of NR4A1, in turn, inhibited osteopontin expression and osteopontin-dependent migration of osteoclast precursors resulted in reduced abundance of bone-resorbing osteoclasts in vivo as well as in an ameliorated bone loss after ovariectomy in mice. This study identifies NR4A1 as a crucial player in the regulation of osteoclast biology and bone remodeling and highlights this nuclear receptor as a promising target for therapeutic intervention during the treatment of osteoporosis. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.


Assuntos
Remodelação Óssea , Movimento Celular , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Animais , Reabsorção Óssea/patologia , Osso Esponjoso/metabolismo , Contagem de Células , Diferenciação Celular , Fusão Celular , Deleção de Genes , Homeostase , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/deficiência , Osteoblastos/metabolismo , Osteopontina/metabolismo , Ovariectomia , Proteínas Repressoras/metabolismo
11.
Arthritis Res Ther ; 20(1): 88, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720262

RESUMO

BACKGROUND: ADAMTS aggrecanases play a major role in cartilage degeneration during degenerative and inflammatory arthritis. The cartilage-specific secreted protein Upper zone of growth plate and cartilage matrix associated protein (Ucma) has been shown to block ADAMTS-triggered aggrecanolysis in experimental osteoarthritis. Here we aimed to investigate whether and how Ucma may affect cartilage destruction and osteophyte formation in the context of inflammatory arthritis. METHODS: Ucma-ADAMTS5 protein interactions were studied using slot blot and solid phase binding assays. Chondrocyte cultures were stimulated with ADAMTS5 or IL-1ß in the presence or absence of Ucma and aggrecanolysis was assessed by neoepitope formation. Arthritis was induced by transfer of K/BxN serum into wild-type (WT), Ucma-deficient and WT mice treated with recombinant Ucma. Cartilage proteoglycan loss and cartilage damage was assessed by safranin-O stain, aggrecanase-induced neoepitope formation and histomorphometry, respectively. Osteophytes were assessed by histomorphometry, micro-computed tomography, RNA in-situ hybridisation for collagen10a1 and osteocalcin, and staining for TRAP activity. Gene expression analyses were performed using real-time RT-PCR. RESULTS: Ucma physically interacted with ADAMTS5 and blocked its aggrecanase activity in chondrocyte cultures. Ucma was highly expressed in the articular cartilage and in osteophytes during arthritis. Ucma had no effect on inflammation and bone erosion. In contrast, Ucma-deficient mice developed significantly more severe cartilage proteoglycan loss and cartilage destruction. Conversely, treatment with Ucma inhibited cartilage degeneration in arthritis. Ucma effectively inhibited ADAMTS5-triggered or IL-1ß-triggered aggrecanolysis in vitro and in vivo. Furthermore, osteophyte formation was reduced in Ucma-deficient mice. CONCLUSIONS: These results indicate that Ucma inhibits aggrecanolysis by physical interaction with ADAMTS5 and protects from cartilage degeneration in inflammatory arthritis. Ucma therefore represents an interesting novel and specific target for preventing cartilage degradation in the context of inflammatory arthritis.


Assuntos
Proteína ADAMTS5/metabolismo , Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Proteínas/metabolismo , Proteína ADAMTS5/genética , Agrecanas/metabolismo , Animais , Linhagem Celular , Condrócitos/metabolismo , Proteínas da Matriz Extracelular , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/genética , Ligação Proteica , Proteínas/genética , Proteoglicanas/metabolismo
13.
Front Immunol ; 7: 557, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27990145

RESUMO

Necrosis is associated with a profound inflammatory response. The regulation of necrosis-associated inflammation, particularly the mechanisms responsible for resolution of inflammation is incompletely characterized. Nanoparticles are known to induce plasma membrane damage and necrosis followed by sterile inflammation. We observed that injection of metabolically inert nanodiamonds resulted in paw edema in WT and Ncf1** mice. However, while inflammation quickly resolved in WT mice, it persisted over several weeks in Ncf1** mice indicating failure of resolution of inflammation. Mechanistically, NOX2-dependent reactive oxygen species (ROS) production and formation of neutrophil extracellular traps were essential for the resolution of necrosis-induced inflammation: hence, by evaluating the fate of the particles at the site of inflammation, we observed that Ncf1** mice deficient in NADPH-dependent ROS failed to generate granulation tissue therefore being unable to trap the nanodiamonds. These data suggest that NOX2-dependent NETosis is crucial for preventing the chronification of the inflammatory response to tissue necrosis by forming NETosis-dependent barriers between the necrotic and healthy surrounding tissue.

14.
Sci Rep ; 6: 38229, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27917897

RESUMO

Hyperuricemia is strongly linked to cardiovascular complications including atherosclerosis and thrombosis. In individuals with hyperuricemia, needle-shaped monosodium urate crystals (nsMSU) frequently form within joints or urine, giving rise to gouty arthritis or renal calculi, respectively. These nsMSU are potent instigators of neutrophil extracellular trap (NET) formation. Little is known on the mechanism(s) that prevent nsMSU formation within hyperuricemic blood, which would potentially cause detrimental consequences for the host. Here, we report that complement proteins and fetuins facilitate the continuous clearance by blood-borne phagocytes and resident macrophages of small urate microaggregates (UMA; <1 µm in size) that initially form in hyperuricemic blood. If this clearance fails, UMA exhibit bipolar growth to form typical full-sized nsMSU with a size up to 100 µm. In contrast to UMA, nsMSU stimulated neutrophils to release NETs. Under conditions of flow, nsMSU and NETs formed densely packed DNase I-resistant tophus-like structures with a high obstructive potential, highlighting the importance of an adequate and rapid removal of UMA from the circulation. Under pathological conditions, intravascularly formed nsMSU may hold the key to the incompletely understood association between NET-driven cardiovascular disease and hyperuricemia.


Assuntos
Armadilhas Extracelulares/metabolismo , Hiperuricemia/metabolismo , Ativação de Neutrófilo , Neutrófilos/metabolismo , Ácido Úrico/metabolismo , Animais , Humanos , Hiperuricemia/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/patologia
16.
Proc Natl Acad Sci U S A ; 113(40): E5856-E5865, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647892

RESUMO

The critical size for strong interaction of hydrophobic particles with phospholipid bilayers has been predicted to be 10 nm. Because of the wide spreading of nonpolar nanoparticles (NPs) in the environment, we aimed to reveal the ability of living organisms to entrap NPs via formation of neutrophil extracellular traps (NETs). Upon interaction with various cell types and tissues, 10- to 40-nm-sized NPs induce fast (<20 min) damage of plasma membranes and instability of the lysosomal compartment, leading to the immediate formation of NETs. In contrast, particles sized 100-1,000 nm behaved rather inertly. Resulting NET formation (NETosis) was accompanied by an inflammatory reaction intrinsically endowed with its own resolution, demonstrated in lungs and air pouches of mice. Persistence of small NPs in joints caused unremitting arthritis and bone remodeling. Small NPs coinjected with antigen exerted adjuvant-like activity. This report demonstrates a cellular mechanism that explains how small NPs activate the NETosis pathway and drive their entrapping and resolution of the initial inflammatory response.


Assuntos
Armadilhas Extracelulares/metabolismo , Inflamação/patologia , Nanopartículas/química , Tamanho da Partícula , Animais , Membrana Celular/metabolismo , Eritrócitos/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunidade , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Nanodiamantes/química , Nanodiamantes/ultraestrutura , Nanopartículas/ultraestrutura , Neutrófilos/metabolismo , Neutrófilos/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
17.
PLoS One ; 11(5): e0155936, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227821

RESUMO

BACKGROUND: To facilitate the development of therapies for rheumatoid arthritis (RA), the Innovative Medicines Initiative BTCure has combined the experience from several laboratories worldwide to establish a series of protocols for different animal models of arthritis that reflect the pathogenesis of RA. Here, we describe chronic pristane-induced arthritis (PIA) model in DA rats, and provide detailed instructions to set up and evaluate the model and for reporting data. METHODS: We optimized dose of pristane and immunization procedures and determined the effect of age, gender, and housing conditions. We further assessed cage-effects, reproducibility, and frequency of chronic arthritis, disease markers, and efficacy of standard and novel therapies. RESULTS: Out of 271 rats, 99.6% developed arthritis after pristane-administration. Mean values for day of onset, day of maximum arthritis severity and maximum clinical scores were 11.8±2.0 days, 20.3±5.1 days and 34.2±11 points on a 60-point scale, respectively. The mean frequency of chronic arthritis was 86% but approached 100% in long-term experiments over 110 days. Pristane was arthritogenic even at 5 microliters dose but needed to be administrated intradermally to induce robust disease with minimal variation. The development of arthritis was age-dependent but independent of gender and whether the rats were housed in conventional or barrier facilities. PIA correlated well with weight loss and acute phase reactants, and was ameliorated by etanercept, dexamethasone, cyclosporine A and fingolimod treatment. CONCLUSIONS: PIA has high incidence and excellent reproducibility. The chronic relapsing-remitting disease and limited systemic manifestations make it more suitable than adjuvant arthritis for long-term studies of joint-inflammation and screening and validation of new therapeutics.


Assuntos
Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Imunossupressores/toxicidade , Terpenos/toxicidade , Animais , Feminino , Masculino , Ratos
18.
Autoimmunity ; 42(4): 286-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19811278

RESUMO

CRP is an important inflammatory marker, however, CRP levels are relatively low in patients with SLE. In addition patients with SLE often display low activities and serum levels for DNase I and complement, respectively. Here we show that DNase I treatment of nec PBMC increased their binding of CRP. Consequently, reduced DNase I activity in patients with SLE may contribute to the impaired opsonisation by CRP of dead cells, exacerbating the clearance defect in SLE of apo and nec cells.


Assuntos
Proteína C-Reativa/metabolismo , Desoxirribonuclease I/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Células Cultivadas , Desoxirribonuclease I/imunologia , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/imunologia , Necrose , Fagocitose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...