Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903248

RESUMO

γ-Alumina with incorporated metal oxide species (including Fe, Cu, Zn, Bi, and Ga) was synthesized by liquid-assisted grinding-mechanochemical synthesis, applying boehmite as the alumina precursor and suitable metal salts. Various contents of metal elements (5 wt.%, 10 wt.%, and 20 wt.%) were used to tune the composition of the resulting hybrid materials. The different milling time was tested to find the most suitable procedure that allowed the preparation of porous alumina incorporated with selected metal oxide species. The block copolymer, Pluronic P123, was used as a pore-generating agent. Commercial γ-alumina (SBET = 96 m2·g-1), and the sample fabricated after two hours of initial grinding of boehmite (SBET = 266 m2·g-1), were used as references. Analysis of another sample of γ-alumina prepared within 3 h of one-pot milling revealed a higher surface area (SBET = 320 m2·g-1) that did not increase with a further increase in the milling time. So, three hours of grinding time were set as optimal for this material. The synthesized samples were characterized by low-temperature N2 sorption, TGA/DTG, XRD, TEM, EDX, elemental mapping, and XRF techniques. The higher loading of metal oxide into the alumina structure was confirmed by the higher intensity of the XRF peaks. Samples synthesized with the lowest metal oxide content (5 wt.%) were tested for selective catalytic reduction of NO with NH3 (NH3-SCR). Among all tested samples, besides pristine Al2O3 and alumina incorporated with gallium oxide, the increase in reaction temperature accelerated the NO conversion. The highest NO conversion rate was observed for Fe2O3-incorporated alumina (70%) at 450 °C and CuO-incorporated alumina (71%) at 300 °C. The CO2 capture was also studied for synthesized samples and the sample of alumina with incorporated Bi2O3 (10 wt.%) gave the best result (1.16 mmol·g-1) at 25 °C, while alumina alone could adsorb only 0.85 mmol·g-1 of CO2. Furthermore, the synthesized samples were tested for antimicrobial properties and found to be quite active against Gram-negative bacteria, P. aeruginosa (PA). The measured Minimum Inhibitory Concentration (MIC) values for the alumina samples with incorporated Fe, Cu, and Bi oxide (10 wt.%) were found to be 4 µg·mL-1, while 8 µg·mL-1 was obtained for pure alumina.

2.
Sci Rep ; 12(1): 21294, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494421

RESUMO

Novel alumina-based materials enriched with vanadia and lanthana were successfully synthesized via in situ modification using a mechanochemical method, and were applied in ammonia-induced selective catalytic reduction of nitrogen oxides (SCR process). The synthesis was optimized in terms of the ball milling time (3 or 5 h), vanadium content (0.5, 1 or 2 wt% in the final product), and lanthanum content (0.5 or 1 wt% in the final product). Vanadium (V) oxide was immobilized on an alumina support to provide catalytic activity, while lanthana was introduced to increase the affinity of nitrogen oxides and create more active adsorption sites. Mechanochemical synthesis successfully produced mesoporous materials with a large specific surface area of 279-337 m2/g and a wide electrokinetic potential range from 60 to (- 40) mV. Catalytic tests showed that the incorporation of vanadia resulted in a very large improvement in catalytic performance compared with pristine alumina, increasing its efficiency from 14 to 63% at 400 °C. The best SCR performance, a 75% nitrogen oxide conversion rate at a temperature of 450 °C, was obtained for alumina enriched with 2 and 0.5 wt% of vanadium and lanthanum, respectively, which may be considered as a promising result.


Assuntos
Óxido de Alumínio , Amônia , Óxido de Alumínio/química , Amônia/química , Catálise , Óxidos de Nitrogênio/química , Óxidos/química , Oxirredução
3.
J Environ Manage ; 324: 116306, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36166864

RESUMO

This study concerns the fabrication of CTAB- and N,N-dimethyltetradecylamine-grafted zirconia and evaluation of their ability to adsorb vanadium ions. The effectiveness of ZrO2 functionalization and the different nature of the modifiers used were confirmed by differences in the porosity (ZrO2: SBET = 347 m2/g; ZrO2-CTAB: SBET = 375 m2/g, ZrO2-NH+: SBET = 155 m2/g), types of functional groups, and isoelectric points (the ZrO2 and CTAB-modified samples have IEPs = 3.8 and 3.9, ZrO2-NH+ has IEP = 7.1) of the prepared adsorbents. The designed materials were tested in batch adsorption experiments involving the removal of vanadium ions from model wastewaters at various process parameters, among which pH proved to be the most important. Based on equilibrium and kinetic evaluations, it was proved that the sorption of V(V) ions followed pseudo-second-order and intraparticle diffusion models, and the data were better fitted to the Langmuir model, suggesting the following order of the sorbents in terms of favorability for V(V) ion adsorption: ZrO2-NH+ > ZrO2 > ZrO2-CTAB. The estimated maximum monolayer capacity of ZrO2-NH+ for V(V) (87.72 mg/g) was the highest among the tested materials. Additionally, it was confirmed that adsorption of V(V) ions onto synthesized materials is a heterogeneous, exothermic, and spontaneous reaction, as evidenced by the calculated values of thermodynamic parameters. The key goals included the transfer of experimental findings obtained using model solutions to the adsorption of V(V) ions from solutions arising from the leaching process of spent catalysts. The highest adsorption efficiencies of 70.8% and 47.5% were recorded for the ZrO2-NH+ material in acidic solution; this may be related to the protonization of -NH+ groups, which favors the sorption of V(V) ions. Based on desorption tests as well as the results of infrared and X-ray photoelectron spectroscopy, irrespective of the process conditions, the physical nature of the adsorbent/adsorbate interaction was confirmed.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Vanádio , Poluentes Químicos da Água/química , Cetrimônio , Concentração de Íons de Hidrogênio , Adsorção , Íons , Cinética , Termodinâmica
4.
ACS Omega ; 7(31): 27062-27078, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967031

RESUMO

This paper discusses the properties of metal oxide/biochar systems for use in wastewater treatment. Titanium, zinc, and iron compounds are most often combined with biochar; therefore, combinations of their oxides with biochar are the focus of this review. The first part of this paper presents the most important information about biochar, including its advantages, disadvantages, and possible modification, emphasizing the incorporation of inorganic oxides into its structure. In the next four sections, systems of biochar combined with TiO2, ZnO, Fe3O4, and other metal oxides are discussed in detail. In the next to last section probable degradation mechanisms are discussed. Literature studies revealed that the dispersion of a metal oxide in a carbonaceous matrix causes the creation or enhancement of surface properties and catalytic or, in some cases, magnetic activity. Addition of metallic species into biochars increases their weight, facilitating their separation by enabling the sedimentation process and thus facilitating the recovery of the materials from the water medium after the purification process. Therefore, materials based on the combination of inorganic oxide and biochar reveal a wide range of possibilities for environmental applications in aquatic media purification.

5.
Materials (Basel) ; 12(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897767

RESUMO

Scientific development has increased the awareness of water pollutant forms and has reawakened the need for its effective purification. Oxyanions are created by a variety of redox-sensitive metals and metalloids. These species are harmful to living matter due to their toxicity, nondegradibility, and mobility in aquatic environments. Among a variety of water treatment techniques, adsorption is one of the simplest, cheapest, and most effective. Since metal-oxide-based adsorbents poses a variety of functional groups onto their surface, they were widely applied in ions sorption. In this paper adsorption of harmful oxyanions by metal oxide-based materials according to literature survey was studied. Characteristic of oxyanions originating from As, V, B, W and Mo, their probable adsorption mechanisms and comparison of their sorption affinity for metal-oxide-based materials such as iron oxides, aluminum oxides, titanium dioxide, manganium dioxide, and various oxide minerals and their combinations are presented in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...