Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Genet Evol ; 119: 105577, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403035

RESUMO

In January 2021, the monitoring of circulating variants of SARS-CoV-2 was initiated in Germany under the Corona Surveillance Act, which was discontinued after July 2023. This initiative aimed to enhance pandemic containment, as specific amino acid changes, particularly in the spike protein, were associated with increased transmission and reduced vaccine efficacy. Our group conducted whole genome sequencing using the ARTIC protocol (currently V4) on Illumina's NextSeq 500 platform (and, starting in May 2023, on the MiSeq DX platform) for SARS-CoV-2 positive specimen from patients at Heidelberg University Hospital, associated hospitals, and the public health office in the Rhine-Neckar/Heidelberg region. In total, we sequenced 26,795 SARS-CoV-2-positive samples between January 2021 and July 2023. Valid sequences, meeting the requirements for upload to the German electronic sequencing data hub (DESH) operated by the Robert Koch Institute (RKI), were determined for 24,852 samples, and the lineage/clade could be identified for 25,912 samples. The year 2021 witnessed significant dynamics in the circulating variants in the Rhine-Neckar/Heidelberg region, including A.27.RN, followed by the emergence of B.1.1.7 (Alpha), subsequently displaced by B.1.617.2 (Delta), and the initial occurrences of B.1.1.529 (Omicron). By January 2022, B.1.1.529 had superseded B.1.617.2, dominating with over 90%. The years 2022 and 2023 were then characterized by the dominance of B.1.1.529 and its sublineages, particularly BA.5 and BA.2, and more recently, the emergence of recombinant variants like XBB.1.5. Since the global dominance of B.1.617.2, the identified variant distribution in our local study, apart from a time delay in the spread of new variants, can be considered largely representative of the global distribution. om a time delay in the spread of new variants, can be considered largely representative of the global distribution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Alemanha/epidemiologia , Hospitais Universitários
2.
Sci Rep ; 13(1): 20299, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985848

RESUMO

At the beginning of the COVID-19 pandemic, it was assumed that SARS-CoV-2 could be transmitted through surgical smoke generated by electrocauterization. Minimally invasive surgery (MIS) was targeted due to potentially higher concentrations of the SARS-CoV-2 particles in the pneumoperitoneum. Some surgical societies even recommended open surgery instead of MIS to prevent the potential spread of SARS-CoV-2 from the pneumoperitoneum. This study aimed to detect SARS-CoV-2 in surgical smoke during open and MIS. Patients with SARS-CoV-2 infection who underwent open surgery or MIS at Heidelberg University Hospital were included in the study. A control group of patients without SARS-CoV-2 infection undergoing MIS or open surgery was included for comparison. The trial was approved by the Ethics Committee of Heidelberg University Medical School (S-098/2021). The following samples were collected: nasopharyngeal and intraabdominal swabs, blood, urine, surgical smoke, and air samples from the operating room. An SKC BioSampler was used to sample the surgical smoke from the pneumoperitoneum during MIS and the approximate surgical field during open surgery in 15 ml of sterilized phosphate-buffered saline. An RT-PCR test was performed on all collected samples to detect SARS-CoV-2 viral particles. Twelve patients with proven SARS-CoV-2 infection underwent open abdominal surgery. Two SARS-CoV-2-positive patients underwent an MIS procedure. The control group included 24 patients: 12 underwent open surgery and 12 MIS. One intraabdominal swab in a patient with SARS-CoV-2 infection was positive for SARS-CoV-2. However, during both open surgery and MIS, none of the surgical smoke samples showed any detectable viral particles of SARS-CoV-2. The air samples collected at the end of the surgical procedure showed no viral particles of SARS-CoV-2. Major complications (CD ≥ IIIa) were more often observed in SARS-CoV-2 positive patients (10 vs. 4, p = 0.001). This study showed no detectable viral particles of SARS-CoV-2 in surgical smoke sampled during MIS and open surgery. Thus, the discussed risk of transmission of SARS-CoV-2 via surgical smoke could not be confirmed in the present study.


Assuntos
COVID-19 , Pneumoperitônio , Humanos , Pandemias/prevenção & controle , Estudos Prospectivos , SARS-CoV-2 , Fumaça , Carga Viral
3.
EMBO Rep ; 24(5): e57162, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951170

RESUMO

Throughout the SARS-CoV-2 pandemic, limited diagnostic capacities prevented sentinel testing, demonstrating the need for novel testing infrastructures. Here, we describe the setup of a cost-effective platform that can be employed in a high-throughput manner, which allows surveillance testing as an acute pandemic control and preparedness tool, exemplified by SARS-CoV-2 diagnostics in an academic environment. The strategy involves self-sampling based on gargling saline, pseudonymized sample handling, automated RNA extraction, and viral RNA detection using a semiquantitative multiplexed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with an analytical sensitivity comparable with RT-qPCR. We provide standard operating procedures and an integrated software solution for all workflows, including sample logistics, analysis by colorimetry or sequencing, and communication of results. We evaluated factors affecting the viral load and the stability of gargling samples as well as the diagnostic sensitivity of the RT-LAMP assay. In parallel, we estimated the economic costs of setting up and running the test station. We performed > 35,000 tests, with an average turnover time of < 6 h from sample arrival to result announcement. Altogether, our work provides a blueprint for fast, sensitive, scalable, cost- and labor-efficient RT-LAMP diagnostics, which is independent of potentially limiting clinical diagnostics supply chains.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Técnicas de Laboratório Clínico/métodos , Pandemias/prevenção & controle , Sensibilidade e Especificidade , RNA Viral/genética
4.
Am J Transplant ; 22(7): 1873-1883, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35384272

RESUMO

Seroconversion after COVID-19 vaccination is impaired in kidney transplant recipients. Emerging variants of concern such as the B.1.617.2 (delta) and the B.1.1.529 (omicron) variants pose an increasing threat to these patients. In this observational cohort study, we measured anti-S1 IgG, surrogate neutralizing, and anti-receptor-binding domain antibodies three weeks after a third mRNA vaccine dose in 49 kidney transplant recipients and compared results to 25 age-matched healthy controls. In addition, vaccine-induced neutralization of SARS-CoV-2 wild-type, the B.1.617.2 (delta), and the B.1.1.529 (omicron) variants was assessed using a live-virus assay. After a third vaccine dose, anti-S1 IgG, surrogate neutralizing, and anti-receptor-binding domain antibodies were significantly lower in kidney transplant recipients compared to healthy controls. Only 29/49 (59%) sera of kidney transplant recipients contained neutralizing antibodies against the SARS-CoV-2 wild-type or the B.1.617.2 (delta) variant and neutralization titers were significantly reduced compared to healthy controls (p < 0.001). Vaccine-induced cross-neutralization of the B.1.1.529 (omicron) variants was detectable in 15/35 (43%) kidney transplant recipients with seropositivity for anti-S1 IgG, surrogate neutralizing, and/or anti-RBD antibodies. Neutralization of the B.1.1.529 (omicron) variants was significantly reduced compared to neutralization of SARS-CoV-2 wild-type or the B.1.617.2 (delta) variant for both, kidney transplant recipients and healthy controls (p < .001 for all).


Assuntos
COVID-19 , Transplante de Rim , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , RNA Mensageiro , SARS-CoV-2 , Transplantados , Vacinas Sintéticas , Proteínas do Envelope Viral/genética , Vacinas de mRNA
5.
EClinicalMedicine ; 39: 101082, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34458708

RESUMO

BACKGROUND: The extent to which children and adolescents contribute to SARS-CoV-2 transmission remains not fully understood. Novel high-capacity testing methods may provide real-time epidemiological data in educational settings helping to establish a rational approach to prevent and minimize SARS-CoV-2 transmission. We investigated whether pooling of samples for SARS-CoV-2 detection by RT-qPCR is a sensitive and feasible high-capacity diagnostic strategy for surveillance of SARS-CoV-2 infections in schools. METHODS: In this study, students and school staff of 14 educational facilities in Germany were tested sequentially between November 9 and December 23, 2020, two or three times per week for at least three consecutive weeks. Participants were randomized for evaluation of two different age adjusted swab sampling methods (oropharyngeal swabs or buccal swabs compared to saliva swabs using a 'lolli method'). Swabs were collected and pooled for SARS-CoV-2 RT-qPCR. Individuals of positive pooled tests were retested by RT-qPCR the same or the following day. Positive individuals were quarantined while the SARS-CoV-2 negative individuals remained in class with continued pooled RT-qPCR surveillance. The study is registered with the German Clinical Trials register (registration number: DRKS00023911). FINDINGS: 5,537 individuals were eligible and 3970 participants were enroled and included in the analysis. In students, a total of 21,978 swabs were taken and combined in 2218 pooled RT-qPCR tests. We detected 41 positive pooled tests (1·8%) leading to 36 SARS-CoV-2 cases among students which could be identified by individual re-testing. The cumulative 3-week incidence for primary schools was 564/100,000 (6/1064, additionally 1 infection detected in week 4) and 1249/100,000 (29/2322) for secondary schools. In secondary schools, there was no difference in the number of SARS-CoV-2 positive students identified from pooled oropharyngeal swabs compared to those identified from pooled saliva samples (lolli method) (14 vs. 15 cases; 1·3% vs. 1·3%; OR 1.1; 95%-CI 0·5-2·5). A single secondary school accounted for 17 of 36 cases (47%) indicating a high burden of asymptomatic prevalent SARS-CoV-2 cases in the respective school and community. INTERPRETATION: In educational settings, SARS-CoV-2 screening by RT-qPCR-based pooled testing with easily obtainable saliva samples is a feasible method to detect incident cases and observe transmission dynamics. FUNDING: Federal Ministry of education and research (BMBF; Project B-FAST in "NaFoUniMedCovid19"; registration number: 01KX2021).

6.
Mol Ther Nucleic Acids ; 18: 708-726, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31726388

RESUMO

The adaptation of CRISPR/Cas technology for use in mammals has revolutionized genome engineering. In particular with regard to clinical application, efficient expression of Cas9 within a narrow time frame is highly desirable to minimize the accumulation of off-target editing. We developed an effective, aptamer-independent retroviral delivery system for Cas9 mRNAs that takes advantage of a unique foamy virus (FV) capability: the efficient encapsidation and transfer of non-viral RNAs. This enabled us to create a FV vector toolbox for efficient, transient delivery (TraFo) of CRISPR/Cas9 components into different target tissues. Co-delivery of Cas9 mRNA by TraFo-Cas9 vectors in combination with retroviral, integration-deficient single guide RNA (sgRNA) expression enhanced efficacy and specificity of gene-inactivation compared with CRISPR/Cas9 lentiviral vector systems. Furthermore, separate TraFo-Cas9 delivery allowed the optional inclusion of a repair matrix for efficient gene correction or tagging as well as the addition of fluorescent negative selection markers for easy identification of off-target editing or incorrect repair events. Thus, the TraFo CRISPR toolbox represents an interesting alternative technology for gene inactivation and gene editing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...