Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 79: 101851, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081412

RESUMO

OBJECTIVE: The bioactive sphingolipid metabolites ceramide and sphingosine-1-phosphate (S1P) accumulate with overnutrition and have been implicated in non-alcoholic steatohepatitis (NASH) development. ORMDL3, a negative regulator of the rate-limiting step in ceramide biosynthesis, has been identified as an obesity-related gene. Therefore, we assessed the role of ORMDL3 in diet-induced obesity and development of NASH. METHODS: Globally overexpressing Ormdl3-Flag transgenic mice (ORMDL3TG) were fed a western high-fat, carbohydrate and cholesterol enriched diet, with high fructose-glucose drinking water. Physiological, biochemical and sphingolipidomic analyses were employed to measure the effect of ORMDL3 overexpression on NASH development. RESULTS: ORMDL3TG male but not female mice fed a western high-fat diet and sugar water had exacerbated adipocyte hypertrophy together with increased severity of white adipose inflammation and fibrosis. Hepatic steatosis, dyslipidemia, impaired glucose homeostasis, hyperinsulinemia, and insulin resistance were significantly more severe only in obese ORMDL3TG male mice that accompanied dramatic liver fibrosis, inflammation, and formation of hepatic crown-like structures, which are unique features of human and murine NASH. Obesogenic diet induces ORMDL expression in male mice but reduces it in females. Mechanistically, overexpression of Ormdl3 lowered the levels of S1P and ceramides only in obese female mice and antithetically increased them in tissues of obese males. ORMDL3TG male mice exhibited a much greater induction of the UPR, propagating ER stress that contributed to their early development of NASH. CONCLUSIONS: This study uncovered a previously unrecognized role for ORMDL3 in sexual dimorphism important for the development and progression of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Feminino , Humanos , Masculino , Camundongos , Ceramidas , Dieta Hiperlipídica/efeitos adversos , Glucose , Inflamação , Proteínas de Membrana/genética , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade , Caracteres Sexuais
2.
PLoS Pathog ; 19(11): e1011842, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033162

RESUMO

Invasion of brain endothelial cells (BECs) is central to the pathogenicity of Neisseria meningitidis infection. Here, we established a key role for the bioactive sphingolipid sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) 2 in the uptake process. Quantitative sphingolipidome analyses of BECs infected with N. meningitidis revealed elevated S1P levels, which could be attributed to enhanced expression of the enzyme sphingosine kinase 1 and its activity. Increased activity was dependent on the interaction of meningococcal type IV pilus with the endothelial receptor CD147. Concurrently, infection led to increased expression of the S1PR2. Blocking S1PR2 signaling impaired epidermal growth factor receptor (EGFR) phosphorylation, which has been shown to be involved in cytoskeletal remodeling and bacterial endocytosis. Strikingly, targeting S1PR1 or S1PR3 also interfered with bacterial uptake. Collectively, our data support a critical role of the SphK/S1P/S1PR axis in the invasion of N. meningitidis into BECs, defining a potential target for adjuvant therapy.


Assuntos
Células Endoteliais , Neisseria meningitidis , Receptores de Esfingosina-1-Fosfato/metabolismo , Células Endoteliais/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/metabolismo , Encéfalo/metabolismo , Lisofosfolipídeos/metabolismo
3.
J Biol Chem ; 299(6): 104775, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142226

RESUMO

The vascular and lymphatic systems both comprise a series of structurally distinct vessels lined with an inner layer of endothelial cells that function to provide a semipermeable barrier to blood and lymph. Regulation of the endothelial barrier is critical for maintaining vascular and lymphatic barrier homeostasis. One of the regulators of endothelial barrier function and integrity is sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite secreted into the blood by erythrocytes, platelets, and endothelial cells and into the lymph by lymph endothelial cells. Binding of S1P to its G protein-coupled receptors, known as S1PR1-5, regulates its pleiotropic functions. This review outlines the structural and functional differences between vascular and lymphatic endothelium and describes current understanding of the importance of S1P/S1PR signaling in regulation of barrier functions. Most studies thus far have been primarily focused on the role of the S1P/S1PR1 axis in vasculature and have been summarized in several excellent reviews, and thus, we will only discuss new perspectives on the molecular mechanisms of action of S1P and its receptors. Much less is known about the responses of the lymphatic endothelium to S1P and the functions of S1PRs in lymph endothelial cells, and this is the major focus of this review. We also discuss current knowledge related to signaling pathways and factors regulated by the S1P/S1PR axis that control lymphatic endothelial cell junctional integrity. Gaps and limitations in current knowledge are highlighted together with the need to further understand the role of S1P receptors in the lymphatic system.


Assuntos
Endotélio Vascular , Vasos Linfáticos , Lisofosfolipídeos , Receptores de Lisoesfingolipídeo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Humanos , Animais , Junções Intercelulares , Transdução de Sinais , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo
4.
FASEB J ; 37(3): e22799, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36753412

RESUMO

Genome-wide association studies have linked the ORM (yeast)-like protein isoform 3 (ORMDL3) to asthma severity. Although ORMDL3 is a member of a family that negatively regulates serine palmitoyltransferase (SPT) and thus biosynthesis of sphingolipids, it is still unclear whether ORMDL3 and altered sphingolipid synthesis are causally related to non-Th2 severe asthma associated with a predominant neutrophil inflammation and high interleukin-17 (IL-17) levels. Here, we examined the effects of ORMDL3 overexpression in a preclinical mouse model of allergic lung inflammation that is predominantly neutrophilic and recapitulates many of the clinical features of severe human asthma. ORMDL3 overexpression reduced lung and circulating levels of dihydrosphingosine, the product of SPT. However, the most prominent effect on sphingolipid levels was reduction of circulating S1P. The LPS/OVA challenge increased markers of Th17 inflammation with a predominant infiltration of neutrophils into the lung. A significant decrease of neutrophil infiltration was observed in the Ormdl3 transgenic mice challenged with LPS/OVA compared to the wild type and concomitant decrease in IL-17, that plays a key role in the pathogenesis of neutrophilic asthma. LPS decreased survival of murine neutrophils, which was prevented by co-treatment with S1P. Moreover, S1P potentiated LPS-induced chemotaxis of neutrophil, suggesting that S1P can regulate neutrophil survival and recruitment following LPS airway inflammation. Our findings reveal a novel connection between ORMDL3 overexpression, circulating levels of S1P, IL-17 and neutrophil recruitment into the lung, and questions the potential involvement of ORMDL3 in the pathology, leading to development of severe neutrophilic asthma.


Assuntos
Asma , Interleucina-17 , Proteínas de Membrana , Animais , Humanos , Camundongos , Asma/metabolismo , Estudo de Associação Genômica Ampla , Inflamação/metabolismo , Interleucina-17/genética , Interleucina-17/uso terapêutico , Lipopolissacarídeos , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Esfingolipídeos/metabolismo
5.
Cancer Res ; 83(4): 553-567, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36541910

RESUMO

Reciprocal interactions between breast cancer cells and the tumor microenvironment (TME) are important for cancer progression and metastasis. We report here that the deletion or inhibition of sphingosine kinase 2 (SphK2), which produces sphingosine-1-phosphate (S1P), markedly suppresses syngeneic breast tumor growth and lung metastasis in mice by creating a hostile microenvironment for tumor growth and invasion. SphK2 deficiency decreased S1P and concomitantly increased ceramides, including C16-ceramide, in stromal fibroblasts. Ceramide accumulation suppressed activation of cancer-associated fibroblasts (CAF) by upregulating stromal p53, which restrained production of tumor-promoting factors to reprogram the TME and to restrict breast cancer establishment. Ablation of p53 in SphK2-deficient fibroblasts reversed these effects, enabled CAF activation and promoted tumor growth and invasion. These data uncovered a novel role of SphK2 in regulating non-cell-autonomous functions of p53 in stromal fibroblasts and their transition to tumor-promoting CAFs, paving the way for the development of a strategy to target the TME and to enhance therapeutic efficacy. SIGNIFICANCE: Sphingosine kinase 2 (SphK2) facilitates the activation of stromal fibroblasts to tumor-promoting cancer-associated fibroblasts by suppressing host p53 activity, revealing SphK2 as a potential target to reprogram the TME.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Mamárias Animais , Fosfotransferases (Aceptor do Grupo Álcool) , Microambiente Tumoral , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Microambiente Tumoral/fisiologia , Proteína Supressora de Tumor p53/genética
6.
Proc Natl Acad Sci U S A ; 119(39): e2204396119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122218

RESUMO

Membrane contact sites (MCS), close membrane apposition between organelles, are platforms for interorganellar transfer of lipids including cholesterol, regulation of lipid homeostasis, and co-ordination of endocytic trafficking. Sphingosine kinases (SphKs), two isoenzymes that phosphorylate sphingosine to the bioactive sphingosine-1-phosphate (S1P), have been implicated in endocytic trafficking. However, the physiological functions of SphKs in regulation of membrane dynamics, lipid trafficking and MCS are not known. Here, we report that deletion of SphKs decreased S1P with concomitant increases in its precursors sphingosine and ceramide, and markedly reduced endoplasmic reticulum (ER) contacts with late endocytic organelles. Expression of enzymatically active SphK1, but not catalytically inactive, rescued the deficit of these MCS. Although free cholesterol accumulated in late endocytic organelles in SphK null cells, surprisingly however, cholesterol transport to the ER was not reduced. Importantly, deletion of SphKs promoted recruitment of the ER-resident cholesterol transfer protein Aster-B (also called GRAMD1B) to the plasma membrane (PM), consistent with higher accessible cholesterol and ceramide at the PM, to facilitate cholesterol transfer from the PM to the ER. In addition, ceramide enhanced in vitro binding of the Aster-B GRAM domain to phosphatidylserine and cholesterol liposomes. Our study revealed a previously unknown role for SphKs and sphingolipid metabolites in governing diverse MCS between the ER network and late endocytic organelles versus the PM to control the movement of cholesterol between distinct cell membranes.


Assuntos
Fosfatidilserinas , Esfingosina , Ceramidas/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Isoenzimas/metabolismo , Lipossomos/metabolismo , Lisofosfolipídeos , Fosfatidilserinas/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
7.
FASEB J ; 36(7): e22372, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639028

RESUMO

Non-alcoholic steatohepatitis (NASH) results from the accumulation of excessive liver lipids leading to hepatocellular injury, inflammation, and fibrosis that greatly increase the risk for hepatocellular carcinoma (HCC). Despite the well-characterized clinical and histological pathology for NASH-driven HCC in humans, its etiology remains unclear and there is a deficiency in pre-clinical models that recapitulate the progression of the human disease. Therefore, we developed a new mouse model amenable to genetic manipulations and gene targeting that mimics the gradual NASH to HCC progression observed in humans. C57BL/6NJ mice were fed a Western high-fat diet and sugar water (HFD/SW) and monitored for effects on metabolism, liver histology, tumor development, and liver transcriptome for up to 54 weeks. Chronic HFD/SW feeding led to significantly increased weight gain, serum and liver lipid levels, liver injury, and glucose intolerance. Hepatic pathology progressed and mice developed hepatocellular ballooning, inflammation, and worse fibrosis was apparent at 16 weeks, greatly increased through 32 weeks, and remained elevated at 54 weeks. Importantly, hepatocellular cancer spontaneously developed in 75% of mice on HFD/SW, half of which were HCC, whereas none of the mice on the chow diet developed HCC. Chronic HFD/SW induced molecular markers of de novo lipogenesis, endoplasmic reticulum stress, inflammation, and accumulation of p62, all of which also participate in the human pathology. Moreover, transcriptome analysis revealed activation of HCC-related genes and signatures associated with poor prognosis of human HCC. Overall, we have identified a new preclinical model that recapitulates known hallmarks of NASH-driven HCC that can be utilized for future molecular mechanistic studies of this disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Dieta Ocidental/efeitos adversos , Fibrose , Inflamação/complicações , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
J Lipid Res ; 62: 100082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33939982

RESUMO

The serine palmitoyltransferase (SPT) complex catalyzes the rate-limiting step in the de novo biosynthesis of ceramides, the precursors of sphingolipids. The mammalian ORMDL isoforms (ORMDL1-3) are negative regulators of SPT. However, the roles of individual ORMDL isoforms are unclear. Using siRNA against individual ORMDLs, only single siORMDL3 had modest effects on dihydroceramide and ceramide levels, whereas downregulation of all three ORMDLs induced more pronounced increases. With the CRISPR/Cas9-based genome-editing strategy, we established stable single ORMDL3 KO (ORMDL3-KO) and ORMDL1/2/3 triple-KO (ORMDL-TKO) cell lines to further understand the roles of ORMDL proteins in sphingolipid biosynthesis. While ORMDL3-KO modestly increased dihydroceramide and ceramide levels, ORMDL-TKO cells had dramatic increases in the accumulation of these sphingolipid precursors. SPT activity was increased only in ORMDL-TKO cells. In addition, ORMDL-TKO but not ORMDL3-KO dramatically increased levels of galactosylceramides, glucosylceramides, and lactosylceramides, the elevated N-acyl chain distributions of which broadly correlated with the increases in ceramide species. Surprisingly, although C16:0 is the major sphingomyelin species, it was only increased in ORMDL3-KO, whereas all other N-acyl chain sphingomyelin species were significantly increased in ORMDL-TKO cells. Analysis of sphingoid bases revealed that although sphingosine was only increased 2-fold in ORMDL-TKO cells, levels of dihydrosphingosine, dihydrosphingosine-1-phosphate, and sphingosine-1-phosphate were hugely increased in ORMDL-TKO cells and not in ORMDL3-KO cells. Thus, ORMDL proteins may have a complex, multifaceted role in the biosynthesis and regulation of cellular sphingolipids.


Assuntos
Sistemas CRISPR-Cas
9.
J Allergy Clin Immunol ; 147(5): 1936-1948.e9, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33130063

RESUMO

BACKGROUND: Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE: We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS: Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS: Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION: Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.


Assuntos
Asma/imunologia , Ceramidas/imunologia , Pulmão/imunologia , Estresse Oxidativo , Adulto , Alérgenos/imunologia , Alternaria/imunologia , Animais , Apoptose , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/imunologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Pyroglyphidae/imunologia , Espécies Reativas de Oxigênio/imunologia , Adulto Jovem
10.
J Immunol Methods ; 490: 112953, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359172

RESUMO

The sphingosine 1-phosphate receptor type 1 (S1PR1) has several important functions, including stabilizing endothelial barrier and maintaining lymphocyte circulation. These functions are critically dependent on the regulation of S1PR1 cell surface expression. Currently available antibodies against human S1PR1 are not able to pick up cell surface expression on living cells by flow cytometry due to intracellular epitopes or unspecific binding. Here we describe the generation of a mouse monoclonal antibody specific for the N-terminal region of human S1PR1. It has an immunoglobulin M (IgM) kappa isotype and detects cell surface expression of recombinant human S1PR1 on overexpressing cells. Due to unspecific intracellular cell staining, it cannot be used for staining of dead cells and tissue slides or in microscopic analyses. It is also not suitable for Western blot analysis and immunoprecipitation. However, the antibody can stain for endogenous S1PR1 on human endothelial cell lines and primary human umbilical vein endothelial cells (HUVEC). Incubation of these cells with various S1PR1 agonists revealed potent S1PR1 internalization, which was not the case with the specific antagonist W146. Surprisingly, human T and B cells isolated from blood and palatine tonsils did not show specific staining, demonstrating significantly lower endogenous S1PR1 surface expression on lymphocytes than on endothelial cells.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Linfócitos B/metabolismo , Linfoma de Burkitt/metabolismo , Células Endoteliais/metabolismo , Imunoglobulina M/isolamento & purificação , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfócitos T/metabolismo , Anilidas/farmacologia , Animais , Linfoma de Burkitt/patologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Especificidade de Órgãos , Organofosfonatos/farmacologia , Tonsila Palatina/citologia , Receptores de Esfingosina-1-Fosfato/imunologia
11.
Sci Rep ; 10(1): 13006, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747802

RESUMO

The aim of this study was to examine T cell function in tonsils of patients with recurrent acute tonsillitis (RAT) or peritonsillar abscess (PTA) by analyzing the cytokine production following T cell receptor (TCR) and co-receptor stimulation with a combination of anti-CD3 and anti-CD28 antibodies. The release of IFN-γ, TNF-α, IL-2, IL-4, IL-6, IL-10 and IL-17A from isolated, stimulated T cells of 27 palatine tonsils (10 RAT, 7 PTA, 10 tonsils without inflammation) was measured via a bead-based flow cytometric analysis. The results were compared with the cytokine release of isolated peripheral T cells in a subset of the same patients (6 PTA, 4 patients without signs of inflammation in the blood). TCR stimulation increased the concentration of released cytokines in tonsil and blood as well as in different forms of inflammation and tissue with no inflammation. Stimulation increased the pro-inflammatory cytokines TNF-α, IFN-γ, and IL-2 more than the anti-inflammatory cytokines IL-4 and IL-10 in tonsil and blood samples in RAT, PTA, and samples without inflammation. Blood of patients with PTA showed a higher pro-inflammatory cytokine level compared to the samples of patients without inflammation. T cells in tonsils are fully responsive and competent for antigen-induced cytokine production in RAT and PTA. One should be aware that tonsillectomy, if indicated, might remove a functioning immune organ. Tonsillotomy might be an alternative even in adults to maintain immunological function.


Assuntos
Citocinas/biossíntese , Tonsilite/metabolismo , Doença Aguda , Adulto , Feminino , Humanos , Ativação Linfocitária , Masculino , Tonsila Palatina/metabolismo , Recidiva , Linfócitos T/imunologia , Tonsilite/sangue , Tonsilite/imunologia
12.
EBioMedicine ; 58: 102898, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32711251

RESUMO

BACKGROUND: One-third of all deaths in hospitals are caused by sepsis. Despite its demonstrated prevalence and high case fatality rate, antibiotics remain the only target-oriented treatment option currently available. Starting from results showing that low-dose anthracyclines protect against sepsis in mice, we sought to find new causative treatment options to improve sepsis outcomes. METHODS: Sepsis was induced in mice, and different treatment options were evaluated regarding cytokine and biomarker expression, lung epithelial cell permeability, autophagy induction, and survival benefit. Results were validated in cell culture experiments and correlated with patient samples. FINDINGS: Effective low-dose epirubicin treatment resulted in substantial downregulation of the sphingosine 1-phosphate (S1P) degrading enzyme S1P lyase (SPL). Consequent accumulation and secretion of S1P in lung parenchyma cells stimulated the S1P-receptor type 3 (S1PR3) and mitogen-activated protein kinases p38 and ERK, reducing tissue damage via increased disease tolerance. The protective effects of SPL inhibition were absent in S1PR3 deficient mice. Sepsis patients showed increased expression of SPL, stable expression of S1PR3, and increased levels of mucin-1 and surfactant protein D as indicators of lung damage. INTERPRETATION: Our work highlights a tissue-protective effect of SPL inhibition in sepsis due to activation of the S1P/S1PR3 axis and implies that SPL inhibitors and S1PR3 agonists might be potential therapeutics to protect against sepsis by increasing disease tolerance against infections. FUNDING: This study was supported by the Center for Sepsis Control and Care (CSCC), the German Research Foundation (DFG), RTG 1715 (to M. H. G. and I. R.) and the National Institutes of Health, Grant R01GM043880 (to S. S.).


Assuntos
Aldeído Liases/metabolismo , Epirubicina/administração & dosagem , Sepse/tratamento farmacológico , Receptores de Esfingosina-1-Fosfato/metabolismo , Animais , Autofagia , Permeabilidade da Membrana Celular , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Epirubicina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Camundongos , Mucina-1/metabolismo , Estudos Prospectivos , Proteína D Associada a Surfactante Pulmonar/metabolismo , Distribuição Aleatória , Sepse/etiologia , Sepse/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Resultado do Tratamento , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Biol Chem ; 295(27): 9121-9133, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32385114

RESUMO

Niemann-Pick type C (NPC) disease is a lysosomal storage disorder arising from mutations in the cholesterol-trafficking protein NPC1 (95%) or NPC2 (5%). These mutations result in accumulation of low-density lipoprotein-derived cholesterol in late endosomes/lysosomes, disruption of endocytic trafficking, and stalled autophagic flux. Additionally, NPC disease results in sphingolipid accumulation, yet it is unique among the sphingolipidoses because of the absence of mutations in the enzymes responsible for sphingolipid degradation. In this work, we examined the cause for sphingosine and sphingolipid accumulation in multiple cellular models of NPC disease and observed that the activity of sphingosine kinase 1 (SphK1), one of the two isoenzymes that phosphorylate sphingoid bases, was markedly reduced in both NPC1 mutant and NPC1 knockout cells. Conversely, SphK1 inhibition with the isotype-specific inhibitor SK1-I in WT cells induced accumulation of cholesterol and reduced cholesterol esterification. Of note, a novel SphK1 activator (SK1-A) that we have characterized decreased sphingoid base and complex sphingolipid accumulation and ameliorated autophagic defects in both NPC1 mutant and NPC1 knockout cells. Remarkably, in these cells, SK1-A also reduced cholesterol accumulation and increased cholesterol ester formation. Our results indicate that a SphK1 activator rescues aberrant cholesterol and sphingolipid storage and trafficking in NPC1 mutant cells. These observations highlight a previously unknown link between SphK1 activity, NPC1, and cholesterol trafficking and metabolism.


Assuntos
Doença de Niemann-Pick Tipo C/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Endossomos/metabolismo , Fibroblastos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteína C1 de Niemann-Pick/genética , Proteína C1 de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/fisiopatologia , Cultura Primária de Células , Transporte Proteico , Esfingolipídeos/metabolismo , Esfingosina/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
Cells ; 9(4)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290092

RESUMO

The breakdown of the endothelial cell (EC) barrier contributes significantly to sepsis mortality. Sphingosine 1-phosphate (S1P) is one of the most effective EC barrier-stabilizing signaling molecules. Stabilization is mainly transduced via the S1P receptor type 1 (S1PR1). Here, we demonstrate that S1P was autonomously produced by ECs. S1P secretion was significantly higher in primary human umbilical vein endothelial cells (HUVEC) compared to the endothelial cell line EA.hy926. Constitutive barrier stability of HUVEC, but not EA.hy926, was significantly compromised by the S1PR1 antagonist W146 and by the anti-S1P antibody Sphingomab. HUVEC and EA.hy926 differed in the expression of the S1P-transporter Spns2, which allowed HUVEC, but not EA.hy926, to secrete S1P into the extracellular space. Spns2 deficient mice showed increased serum albumin leakage in bronchoalveolar lavage fluid (BALF). Lung ECs isolated from Spns2 deficient mice revealed increased leakage of fluorescein isothiocyanate (FITC) labeled dextran and decreased resistance in electric cell-substrate impedance sensing (ECIS) measurements. Spns2 was down-regulated in HUVEC after stimulation with pro-inflammatory cytokines and lipopolysaccharides (LPS), which contributed to destabilization of the EC barrier. Our work suggests a new mechanism for barrier integrity maintenance. Secretion of S1P by EC via Spns2 contributed to constitutive EC barrier maintenance, which was disrupted under inflammatory conditions via the down-regulation of the S1P-transporter Spns2.


Assuntos
Células Endoteliais/metabolismo , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/patologia , Proteínas de Membrana/metabolismo , Camundongos , Ratos , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
15.
Virus Res ; 276: 197835, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31821843

RESUMO

Infections with the herpes simplex virus type 1 (HSV-1) are common and widespread. Most infections remain undetected but severe forms may develop in newborns and in immunocompromised patients. Moreover, HSV-1 might be involved in the pathogenesis of atherosclerosis, which may include viral infection of the endothelium. Antiviral therapy is efficient to treat symptomatic patients. However, an increasing accumulation of resistance-associated mutations has been observed in the viral genome. Thus, new antiviral strategies are focused on host factors. Among others, signaling of bioactive sphingolipids seems to be important in mediating HSV-1 replication. With the present study, regulation and function of sphingosine-1-phosphate (S1P)-based signaling were analyzed in HSV-1-infected human umbilical vein endothelial cells (HUVEC). Our data indicate that viral replication in endothelial cells relies on sphingosine kinase (SK) activity and S1P receptor (S1PR)1,3-5 signaling, which involves the activation of phosphatidylinositol-3-kinase (PI3K) and the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac-1). Inhibitor- or siRNA-meditated reduction of Rac-1 activity decreased HSV-1 replication. In general, targeting S1P-related signaling may be a successful strategy to establish new anti-HSV-1 therapies.


Assuntos
Herpesvirus Humano 1/fisiologia , Interações entre Hospedeiro e Microrganismos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/virologia , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Células Cultivadas , Herpesvirus Humano 1/genética , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingolipídeos/metabolismo , Esfingosina/metabolismo , Replicação Viral
16.
Med Microbiol Immunol ; 207(3-4): 227-242, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29700602

RESUMO

The human cytomegalovirus (HCMV) is a common pathogen, which causes severe or even deadly diseases in immunocompromised patients. In addition, congenital HCMV infection represents a major health concern affecting especially the lung tissue of the susceptible individuals. Antivirals are a useful strategy to treat HCMV-caused diseases. However, all approved drugs target viral proteins but significant toxicity and an increasing resistance against these compounds have been observed. In infected cells, numerous host molecules have been identified to play important roles during HCMV replication. Among others, HCMV infection depends on the presence of bioactive sphingolipids. In this study, the role of sphingosine-1-phosphate (S1P) signaling in HCMV-infected human embryonal lung fibroblasts (HELF) was analyzed. Viral replication depended on the functional activity of sphingosine kinases (SK). During SK inhibition, addition of extracellular S1P restored HCMV replication. Moreover, neutralization of extracellular S1P by anti-S1P antibodies decreased HCMV replication as well. While the application of FTY720 as an functional antagonist of S1P receptor (S1PR)1,3-5 signaling did not reduce HCMV replication significantly, JTE-013, an inhibitor of S1PR2, decreased viral replication. Furthermore, inhibition of Rac-1 activity reduced HCMV replication, whereas inhibition of the Rac-1 effector protein Rac-1-activated kinase 1 (PAK1) had no influence. In general, targeting S1P-induced pathways, which are essential for a successful HCMV replication, may represent a valuable strategy to develop new antiviral drugs.


Assuntos
Citomegalovirus/crescimento & desenvolvimento , Fibroblastos/metabolismo , Fibroblastos/virologia , Lisofosfolipídeos/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Replicação Viral , Células Cultivadas , Humanos , Pulmão/citologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Esfingosina/metabolismo
17.
PLoS One ; 12(9): e0183214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28877231

RESUMO

The palatine tonsils, localized in the oropharynx, are easily accessible secondary lymphoid tissue in humans. Inflammation of the palatine tonsils, local and chronic in case of chronic tonsillitis (CT) or acute in the presence of a peritonsillar abscess (PTA), ranks among the most common diseases in otolaryngology. However, the functionality of tonsillar immune cells, notably T-cells, in the context of these immune pathologies is poorly understood. We have examined the functional status of human tonsillar T-cells in CT and compared it to the acute inflammatory setting of a PTA. Patients presenting with CT (n = 10) or unilateral PTA (n = 7) underwent bilateral tonsillectomy and a subgroup of 8 patients underwent additional blood sampling. T-cells were purified via automated magnetic selection and subjected to flow cytometry-based immunophenotyping. In addition, the response to T-cell receptor (TCR) stimulation was assessed at the level of proximal signaling, activation marker expression and proliferation. We observed no difference between the percentage of T helper (CD4(+)) cells from tonsil tissue in CT and PTA, but observed a trend towards a higher percentage of T helper cells in the blood of patients with PTA versus CT, probably reflecting an acute, systemic bacterial infection in the former cohort. Tonsils from CT harbored more PD-1(+) CD4(+) T-cells, pointing to T-cell exhaustion due to chronic infection. This notion was supported by functional studies that showed a tendency to weaker TCR responses of tonsillar T-cells from CT. Intriguingly, tonsillar T-cells recurrently featured a dampened response to T-cell receptor stimulation at the level of receptor proximal signaling steps compared to peripheral T-cells. In sum, our study documents distinct differences in tonsillar T-cell class distribution and function between the various pathological conditions. Our observations are consistent with the concept that tonsillar T-cells react to infections by eliciting specific immunological responses in chronic versus acute settings of inflammation.


Assuntos
Tonsila Palatina/imunologia , Tonsila Palatina/patologia , Linfócitos T/imunologia , Tonsilite/imunologia , Tonsilite/patologia , Adolescente , Adulto , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Doença Crônica , Feminino , Humanos , Imunofenotipagem , Terapia de Imunossupressão , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Abscesso Peritonsilar/imunologia , Abscesso Peritonsilar/patologia , Fenótipo , Receptores Imunológicos/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Adulto Jovem
18.
Int J Mol Sci ; 18(6)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617331

RESUMO

Infectious diseases are a global health burden and remain associated with high social and economic impact. Treatment of affected patients largely relies on antimicrobial agents that act by directly targeting microbial replication. Despite the utility of host specific therapies having been assessed in previous clinical trials, such as targeting the immune response via modulating the cytokine release in sepsis, results have largely been frustrating and did not lead to the introduction of new therapeutic tools. In this article, we will discuss current evidence arguing that, by applying the concept of hormesis, already approved pharmacological agents could be used therapeutically to increase survival of patients with infectious disease via improving disease tolerance, a defense mechanism that decreases the extent of infection-associated tissue damage without directly targeting pathogenic microorganisms.


Assuntos
Anti-Infecciosos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Hormese , Inflamação/tratamento farmacológico , Sepse/tratamento farmacológico , Animais , Anti-Infecciosos/farmacologia , Autofagia/efeitos dos fármacos , Doenças Transmissíveis/complicações , Doenças Transmissíveis/genética , Dano ao DNA/efeitos dos fármacos , Humanos , Inflamação/complicações , Inflamação/genética , Sepse/complicações , Sepse/genética
19.
Eur J Immunol ; 46(12): 2767-2777, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27683081

RESUMO

Sepsis is a systemic inflammatory response to pathogens and a leading cause of hospital related mortality worldwide. Sphingosine 1-phosphate (S1P) regulates multiple cellular processes potentially involved in the pathogenesis of sepsis, including antigen presentation, lymphocyte egress, and maintenance of vascular integrity. We thus explored the impact of manipulating S1P signaling in experimental polymicrobial sepsis in mice. Administration of 4-deoxypyridoxine (DOP), an inhibitor of the S1P-degrading enzyme S1P-lyase, or of the sphingosine analog FTY720 that serves as an S1P receptor agonist after phosphorylation ameliorated morbidity, improved recovery from sepsis in surviving mice, and reduced sepsis-elicited hypothermia and body weight loss. Treated mice developed lymphopenia, leading to an accumulation of lymphocytes in peripheral lymph nodes, and reduced bacterial burden in liver, but not in blood. Sepsis-induced upregulation of mRNA expression of cytokines in spleen remained unchanged, but reduction of IL-6, TNF-α, MCP-1, and IL-10 in plasma was evident. DOP and FTY720 treatment significantly reduced levels of Evans blue leakage from blood into liver and lung, decreased hematocrit values, and lowered plasma levels of VEGF-A in septic mice. Collectively, our results indicate that modulation of S1P signaling showed a protective phenotype in experimental sepsis by modulating vascular and immune functions.


Assuntos
Cloridrato de Fingolimode/uso terapêutico , Lisofosfolipídeos/metabolismo , Piridoxina/análogos & derivados , Receptores de Lisoesfingolipídeo/metabolismo , Sepse/tratamento farmacológico , Esfingosina/análogos & derivados , Animais , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Imunomodulação , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monoéster Fosfórico Hidrolases/metabolismo , Piridoxina/uso terapêutico , Sepse/imunologia , Transdução de Sinais , Esfingosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue
20.
J Immunol Methods ; 427: 66-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26472683

RESUMO

Increasing clinical evidence indicates that removal of the palatine tonsils enhances the risk for adults to suffer from severe illnesses. Together with recent experimental findings pointing to the presence of immunologically competent immune cells these findings illustrate that adult palatine tonsils likely play an appreciable role in the host immune response. T-cells are abundant in the palatine tonsil and are a pivotal entity of the adaptive immune response. However, investigation of T-cells from tonsils has been widely neglected and largely restricted to immune phenotyping. Accordingly, methodological literature describing the experimental preparation and isolation of T-cells from tonsils is scarce and has rarely been complemented with rigorous tests of T-cell functionality. We report here on a comparative investigation of three isolation protocols composed of permutations of different tissue grinding approaches, density gradient centrifugation and automated magnetic collection of CD4/CD8 T-cells. Importantly we put a strong emphasis on assessing the impact of the preparative procedures on the functionality of T-cells at the level of viability and functional response to T-cell receptor (TCR) ligation. The reported, optimized preparation protocols allow for the rapid isolation of highly viable, functional T-cells within 2.5h and represent a useful, affordable approach for the analysis of tonsillar T-cells.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Tonsila Palatina/citologia , Linfócitos T/imunologia , Adulto , Feminino , Humanos , Masculino , Tonsila Palatina/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...