Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825121

RESUMO

The evaluation of dairy cow feed efficiency using residual feed intake accounts for known energy sinks. However, behavioral traits may also contribute to the variation in feed efficiency. Our objective was to estimate the heritability and repeatability of behavioral traits and their genetic correlations with feed efficiency and its components in lactating Holstein cows. The first data set consisted of 36,075 daily rumination and lying time records collected using a SMARTBOW ear tag accelerometer (Zoetis, Parsippany, NJ) and 6,371 weekly feed efficiency records of 728 cows from the University of Wisconsin-Madison. The second data set consisted of 59,155 daily activity records, measured as number of steps, recorded by pedometers (AfiAct; S.A.E. Afikim, Kibbutz Afikim, Israel), and 8,626 weekly feed efficiency records of 635 cows from the University of Florida. Feed efficiency and its components included dry matter intake, change in body weight, metabolic body weight, secreted milk energy, and residual feed intake. The statistical models included the fixed effect of cohort, lactation number, and days in milk, and the random effects of animal and permanent environment. Heritability estimates for behavioral traits using daily records were 0.19 ± 0.06 for rumination and activity, and 0.37 ± 0.07 for lying time. Repeatability estimates for behavioral traits using daily data ranged from 0.56 ± 0.02 for activity to 0.62 ± 0.01 for lying time. Both heritability and repeatability estimates were larger when weekly records instead of daily records were used. Rumination and activity had positive genetic correlations with residual feed intake (0.40 ± 0.19 and 0.31 ± 0.22, respectively) while lying time had a negative genetic correlation with this residual feed intake (-0.27 ± 0.11). These results indicate that more efficient cows tend to spend more time lying and less time active. Additionally, less efficient cows tend to eat more and therefore also tend to ruminate longer. Overall, sensor-based behavioral traits are heritable and genetically correlated with feed efficiency and its components and, therefore, they could be used as indicators to identify feed efficient cows within the herd.

2.
Front Vet Sci ; 11: 1302573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784656

RESUMO

Introduction: High feed bunk stocking densities can differentially impact individual dairy cows' competitive behaviors, feeding patterns, and feed efficiency. Our objective was to manipulate feed bunk stocking densities to evaluate intra-individual behavioral consistency across stocking densities and quantify associations with feed efficiency and production. Methods: Thirty-two primiparous (130.7 ± 29.0 days in milk, DIM) and 32 multiparous (111.3 ± 38.3 DIM) lactating Holstein cows were housed with 32 roughage intake control (RIC) bins. Each cow was assigned to share 8 bins with others of the same parity and similar body weight (16 cows/block; 2:1 feed bunk stocking density except during tests). Competition and feeding patterns were evaluated via video and RIC data, respectively, at 3 stocking densities (1:1, 2:1, 4:1 cows/bin) during 1-h tests (2 tests/stocking density; 6 tests/cow) following 2 h feed deprivation. Residual feed intake (RFI) was calculated across the 45-d study as the difference between observed and predicted dry matter intake (DMI) after accounting for known energy sinks. Linear mixed models were used to evaluate the overall impact of test stocking density on competition and feeding patterns. To evaluate intra-individual consistency between stocking densities, individual stability statistic (ISS) scores were computed. Correlational relationships were determined between RFI and ISS scores. Results and dicsussion: Cows displayed the most competitive behaviors at 2:1 stocking density (p < 0.0001) but experienced the highest rate of contacts per minute of eating time at 4:1 (1:1 vs. 2:1 vs. 4:1: 0.09 vs. 0.95 vs. 1.60 contacts/min; p < 0.0001). Feeding patterns were modulated as stocking density increased; eating rate increased (0.16 vs. 0.18 vs. 0.22 kg/min; p < 0.001) as eating time (40.3 vs. 28.2 vs. 14.6 min; p < 0.001) and DMI decreased (6.3 vs. 5.1 vs. 3.0 kg; p < 0.001). As stocking density doubled, individuals remained consistent (p = 0.018) in time spent near others actively eating and tended to remain consistent in competition behavior and feeding patterns (0.053 ≤ p ≤ 0.094). Between 2:1 and 4:1, cows with higher DMI and milk production were more consistent in first-visit DMI and duration. Feed efficiency was not associated with behavioral consistency across the tests (p ≥ 0.14). Nonetheless, feed bunk stocking density has behavioral implications which should be considered in nutritional management decisions.

3.
J Dairy Sci ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754817

RESUMO

Large data sets allow estimating feed required for individual milk components or body maintenance. Phenotypic regressions are useful for nutrition management, but genetic regressions are more useful in breeding programs. Dry matter intake (DMI) records from 8,513 lactations of 6,621 Holstein cows were predicted from phenotypes or genomic evaluations for milk components and body size traits. The mixed models also included days in milk, age-parity subclass, trial date, management group, and body weight change during 28- and 42-d feeding trials in mid-lactation. Phenotypic regressions of DMI on milk (0.014 ± 0.006), fat (3.06 ± 0.01), and protein (4.79 ± 0.25) were much less than corresponding genomic regressions (0.08 ± 0.03, 11.30 ± 0.47, and 9.35 ± 0.87) or sire genomic regressions multiplied by 2 (0.048 ± 0.04, 6.73 ± 0.94, and 4.98 ± 1.75). Thus, marginal feed costs as fractions of marginal milk revenue were higher from genetic than phenotypic regressions. According to the energy-corrected milk formula, fat production requires 69% more DMI than protein production. In the phenotypic regression, it was estimated that protein production requires 56% more DMI than fat. However, the genomic regression for the animal showed a difference of only 21% more DMI for protein compared with fat, while the sire genomic regressions indicated approximately 35% more DMI for fat than protein. Estimates of annual maintenance in kg DMI / kg body weight/lactation were similar from phenotypic regression (5.9 ± 0.14), genomic regression (5.8 ± 0.31), and sire genomic regression multiplied by 2 (5.3 ± 0.55) and are larger than those estimated by NASEM (2021) based on NEL equations. Multiple regressions on genomic evaluations for the 5 type traits in body weight composite (BWC) showed that strength was the type trait most associated with body weight and DMI, agreeing with the current BWC formula, whereas other traits were less useful predictors, especially for DMI. The Net Merit formula used to weight different genetic traits to achieve an economically optimal overall selection response was revised in 2021 to better account for these estimated regressions. To improve profitability, breeding programs should select smaller cows with negative residual feed intake that produce more milk, fat, and protein.

4.
J Dairy Sci ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608943

RESUMO

Dairy producers are experiencing production and animal welfare pressures from the increasing frequency and severity of heat stress events due to global climate change. Offspring performance during the pre-weaning and lactating periods is compromised when exposed to heat stress during late gestation (in utero). However, knowledge of the lingering impacts of in utero heat stress on yearling dairy heifers is limited. Herein, we investigated the long-term effects of in utero heat stress on heifer growth, feed efficiency, and enteric methane emissions in post-pubertal heifers. During the last 56 d of gestation, 38 pregnant cows carrying heifer calves were exposed to either heat stress (IUHT; n = 17) or artificial cooling (IUCL; n = 21). At 18 ± 1 mo of age, the resulting IUCL and IUHT heifers were enrolled in the present 63-d study. Heifers were blocked by weight and randomly assigned to 3 pens with Calan gates. Body weights (BW) were recorded on 3 consecutive days at the start and end of the trial and used to calculate average daily gain (ADG). Body condition score (BCS), hip width, body length, and chest girth were measured at the start and end of the study. All heifers were fed a TMR comprised of 46.6% oatlage, 44.6% grass/alfalfa haylage, 7.7% male-sterile corn silage, 0.3% urea, and 0.8% mineral/vitamin supplement (DM basis). The TMR and refusal samples were obtained daily, composited weekly, and dried to calculate DMI. During the study, each pen had access to a GreenFeed unit for 8 ± 1d to measure CH4 and CO2 gas fluxes. During the last 3 d of measuring CH4 and CO2 fluxes, fecal samples were collected, composited by animal, dried, and analyzed to calculate NDF, OM, and DM digestibility. On the last day of fecal sampling, blood samples were also collected via coccygeal venipuncture, and gas chromatography time-of-flight mass spectrometry analysis was performed Residual feed intake (RFI; predicted DMI - observed DMI) and feed conversion efficiency (FCE; DMI/ADG) were calculated to estimate feed efficiency. No differences were found in initial or final BW, hip width, chest girth, or BCS; however, IUCL heifers were longer in body length compared with IUHT heifers. Dry matter intake, ADG, RFI, and FCE were similar between IUHT and IUCL heifers. In utero heat stressed and IUCL heifers produced similar amounts of CH4 and CO2, and no differences were found in the number of GreenFeed visits or latency to approach the GreenFeed. The concentrations of 6 blood metabolites involved in lipogenic pathways were different between in utero treatments. In conclusion, in utero heat stress does not seem to have long-term effects on feed efficiency or methane emissions during the post-pubertal growing phase; however, IUCL heifers maintained a body length advantage over their IUHT counterparts and differed in concentrations of several candidate metabolites that encourage further exploration of their potential function in key organs, such as the liver and mammary gland.

5.
Animals (Basel) ; 14(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473101

RESUMO

Our objective in this exploratory study was to evaluate the long-term impacts of pre-weaning social isolation vs. contact on subsequent growth and feed efficiency of Holstein heifers. As pre-weaned calves, 41 heifers were housed individually (n = 15 heifers) or in pairs (n = 13 pairs; 26 heifers). At 18 months of age, heifers were blocked by body weight and randomly assigned to one of three pens within a block (six to eight heifers per pen; six pens total), with original pairs maintained. Body weight (BW), hip height and width, and chest girth were measured at the start and end of the study. Each pen was given 3 days of access to a GreenFeed greenhouse gas emissions monitor to assess potential physiological differences between treatments in enteric methane emissions or behavioral differences in propensity to approach a novel object. During the 9-week study, heifers were fed a common diet containing 62.3% male-sterile corn silage, 36.0% haylage, 0.7% urea, and 1.0% mineral (DM basis). To calculate daily feed intake, as-fed weights and refusals were recorded for individual heifers using Calan gates. Feed samples were collected daily, composited by week, and dried to calculate dry matter intake (DMI). Feed refusal and fecal samples were collected on 3 consecutive days at 3 timepoints, composited by heifer, dried, and analyzed to calculate neutral detergent fiber (NDF), organic matter (OM), and DM digestibility. Feed efficiency was calculated as feed conversion efficiency (FCE; DMI/average daily gain [ADG]) and residual feed intake (RFI; observed DMI-predicted DMI). Paired and individually housed heifers did not differ in DMI, ADG, FCE, or RFI. Although no differences were found in initial or final hip height, hip width, or chest girth, heifers which had been pair-housed maintained a greater BW than individually housed heifers during the trial. Methane production, intensity, and yield were similar between treatments. Pre-weaning paired or individual housing did not impact the number of visits or latency to approach the GreenFeed; approximately 50% of heifers in each treatment visited the GreenFeed within 8 h of exposure. Digestibility of OM, DM, and NDF were also similar between housing treatments. In conclusion, pre-weaning pair housing had no adverse effects on growth, feed efficiency, or methane emissions at 18 to 20 months of age.

6.
J Dairy Sci ; 107(6): 3847-3862, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38216045

RESUMO

Our objectives were to (1) evaluate cows' preferences for visiting feed bins limited to either same- versus mixed-parity social interactions, depending on their parity; (2) examine the effect of parity and bin social dynamic type on competition behavior and feeding patterns, and (3) investigate cow-level relationships between feed bunk competition behavior, feeding patterns, and feed efficiency. Twenty-eight primiparous and 28 multiparous (2.4 ± 0.6 lactations) lactating Holstein cows (127.8 ± 30.1 and 145.3. ± 10.4 DIM, respectively) were housed in a freestall pen with 28 roughage intake control bins (2:1 stocking density). Each cow was assigned to 2 bins, including 1 shared with 3 other cows of the same parity (SM) and 1 with 3 cows of mixed parities (MX, 50% primiparous and 50% multiparous). Feed bunk competition was recorded via video in the first hour after morning feed delivery for 2 d, and feeding patterns were recorded from 24-h roughage intake control data. Residual feed intake was calculated as the difference between predicted and observed dry matter intake after accounting for known energy sinks. Based on the first visit to the feed bunk after fresh feed delivery, multiparous cows tended to prefer the MX bin compared with the SM one; cows showed no other overall preference for bin type based on number of visits. Over time, multiparous cows remained consistent in their magnitude of preference for visiting each bin type, but involvement in competition was not consistent over time. Primiparous cows tended to be involved in more total competitive contacts and ate faster at the SM bin compared with the MX one. Those primiparous cows who visited the SM bin more often within the first hour after morning feed delivery tended to be less feed efficient. Multiparous cows initiated more successful replacements after a displacement at the MX versus SM bin, with no difference in feeding patterns between bin types. Regardless of parity or bin type, visiting the bunk sooner after feed delivery was correlated with involvement in more competitive interactions and more time eating within the first 30 min. Consuming more feed during a longer first visit to the bunk after fresh feed delivery was correlated with being less feed efficient. Overall, when given the choice of feeding from bins shared with cows of the same or mixed parities at a 2:1 stocking density, primiparous cows showed differences in behavior between those bin types, with implications for feed efficiency; these effects are perhaps an unintended consequence of compensatory strategies to avoid direct competition with multiparous cows.


Assuntos
Ração Animal , Comportamento Alimentar , Paridade , Animais , Bovinos , Feminino , Lactação , Gravidez , Dieta/veterinária
7.
J Dairy Sci ; 107(4): 2194-2206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37923210

RESUMO

The ability of a dairy cow to perform reliably over time is an interesting trait to include in dairy cattle breeding programs aimed at improving dairy cow resilience. Consistency, defined as the quality of performing as expected each day of the lactation, could be highly associated with resilience, defined as animal's ability to maintain health and performance in the presence of environmental challenges, including pathogens, heat waves, and nutritional changes. A total of 51,415,022 daily milk weights collected from 2018 to 2023 were provided for 255,191 multiparous Holstein cows milked 3 times daily in conventional parlor systems on farms in 32 states. The temporal variance (TEMPVAR) of milk yield from 5 to 305 d postpartum was computed as the log-transformed variance of daily deviations between observed and expected individual milk weights. Lower values of TEMPVAR imply smaller day-to-day deviations from expectations, indicating consistent performance, whereas larger values indicate inconsistent performance. Expected daily milk weights were computed using 3 nonparametric and parametric regression models: (1) loceally estimated scatterplot smoothing regression with a 0.75 span; (2) polynomial quantile regression using the median (0.5 quantile), and (3) polynomial quantile regression using a 0.7 quantile. The univariate statistical model included age at first calving and herd-year-season as fixed effects and cow as a random effect. Heritability estimates (standard errors) of TEMPVAR phenotypes calculated over the entire lactation ranged between 0.227 (0.011) and 0.237 (0.011), demonstrating that cows are genetically predisposed to display consistent or inconsistent performance. Estimated genetic correlations calculated using a multiple-trait model between TEMPVAR traits and between lactations were high (>0.95), indicating TEMPVAR is repeatable across lactations and robust to the model used to compute expected daily milk yield. Higher TEMPVAR phenotypes reflect more variation in performance, hence greater inconsistency, which is undesirable. Therefore, correlations between predicted transmitting abilities (PTA) for TEMPVAR and milk yield of 0.57 indicate that high-producing cows exhibit more day-to-day variation in performance. Correlations with productive life and livability were -0.38 and -0.48, respectively. Correlations between PTA for TEMPVAR and those of postpartum health traits were also negative, ranging from -0.41 to -0.08. Given that health traits are derived from disease resistance measurements, and higher health trait PTA are preferred, our results indicate that more consistent cows tend to have fewer health problems and greater longevity. Overall, our findings suggest that temporal variation in daily milk weights can be used to identify consistent animals that maintain expected performance throughout the lactation, which will enable selection for greater resilience to management and environmental perturbations.


Assuntos
Doenças dos Bovinos , Leite , Gravidez , Feminino , Bovinos/genética , Animais , Lactação/genética , Período Pós-Parto , Doenças dos Bovinos/genética , Paridade
8.
J Dairy Sci ; 107(2): 1054-1067, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37769947

RESUMO

Resilience can be defined as the capacity to maintain performance or bounce back to normal functioning after a perturbation, and studying fluctuations in daily feed intake may be an effective way to identify resilient dairy cows. Our goal was to develop new phenotypes based on daily dry matter intake (DMI) consistency in Holstein cows, estimate genetic parameters and genetic correlations with feed efficiency and milk yield consistency, and evaluate their relationships with production, longevity, health, and reproduction traits. Data consisted of 397,334 daily DMI records of 6,238 lactating Holstein cows collected from 2007 to 2022 at 6 research stations across the United States. Consistency phenotypes were calculated based on the deviations from expected daily DMI for individual cows during their respective feeding trials, which ranged from 27 to 151 d in duration. Expected values were derived from different models, including simple average, quadratic and cubic quantile regression with a 0.5 quantile, and locally estimated scatterplot smoothing (LOESS) regression with span parameters 0.5 and 0.7. We then calculated the log of variance (log-Var-DMI) of daily deviations for each model as the consistency phenotype. Consistency of milk yield was also calculated, as a reference, using the same methods (log-Var-Milk). Genetic parameters were estimated using an animal model, including lactation, days in milk and cohort as fixed effects, and animal as random effect. Relationships between log-Var-DMI and traits currently considered in the US national genetic evaluation were evaluated using Spearman's rank correlations between sires' breeding values. Heritability estimates for log-Var-DMI ranged from 0.11 ± 0.02 to 0.14 ± 0.02 across models. Different methods (simple average, quantile regressions, and LOESS regressions) used to calculate log-Var-DMI yielded very similar results, with genetic correlations ranging from 0.94 to 0.99. Estimated genetic correlations between log-Var-DMI and log-Var-Milk ranged from 0.51 to 0.62. Estimated genetic correlations between log-Var-DMI and feed efficiency ranged from 0.55 to 0.60 with secreted milk energy, from 0.59 to 0.63 with metabolic body weight, and from 0.26 to 0.31 with residual feed intake (RFI). Relationships between log-Var-DMI and the traits in the national genetic evaluation were moderate and positive correlations with milk yield (0.20 to 0.21), moderate and negative correlations with female fertility (-0.07 to -0.20), no significant correlations with health and longevity, and favorable correlations with feed efficiency (-0.23 to -0.25 with feed saved and 0.21 to 0.26 with RFI). We concluded that DMI consistency is heritable and may be an indicator of resilience. Cows with lower variation in the difference between actual and expected daily DMI (more consistency) may be more effective in maintaining performance in the face of challenges or perturbations, whereas cows with greater variation in observed versus expected daily DMI (less consistency) are less feed efficient and may be less resilient.


Assuntos
Lactação , Leite , Humanos , Bovinos/genética , Feminino , Animais , Lactação/genética , Leite/metabolismo , Ingestão de Alimentos/genética , Cruzamento , Peso Corporal/genética , Ração Animal
9.
J Dairy Sci ; 107(5): 3090-3103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38135048

RESUMO

It is now widely accepted that dairy cow performance is influenced by both the host genome and rumen microbiome composition. The contributions of the genome and the microbiome to the phenotypes of interest are quantified by heritability (h2) and microbiability (m2), respectively. However, if the genome and microbiome are included in the model, then the h2 reflects only the contribution of the direct genetic effects quantified as direct heritability (hd2), and the holobiont effect reflects the joint action of the genome and the microbiome, quantified as the holobiability (ho2). The objectives of this study were to estimate h2, hd2,m2, and ho2 for dry matter intake, milk energy, and residual feed intake; and to evaluate the predictive ability of different models, including genome, microbiome, and their interaction. Data consisted of feed efficiency records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. Three kernel models were fit to each trait: one with only the genomic effect (model G), one with the genomic and microbiome effects (model GM), and one with the genomic, microbiome, and interaction effects (model GMO). The model GMO, or holobiont model, showed the best goodness-of-fit. The hd2 estimates were always 10% to 15% lower than h2 estimates for all traits, suggesting a mediated genetic effect through the rumen microbiome, and m2 estimates were moderate for all traits, and up to 26% for milk energy. The ho2 was greater than the sum of hd2 and m2, suggesting that the genome-by-microbiome interaction had a sizable effect on feed efficiency. Kernel models fitting the rumen microbiome (i.e., models GM and GMO) showed larger predictive correlations and smaller prediction bias than the model G. These findings reveal a moderate contribution of the rumen microbiome to feed efficiency traits in lactating Holstein cows and strongly suggest that the rumen microbiome mediates part of the host genetic effect.


Assuntos
Lactação , Microbiota , Feminino , Bovinos , Animais , Rúmen , RNA Ribossômico 16S , Leite , Fenótipo , Ração Animal , Dieta/veterinária
10.
Metabolites ; 13(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37755303

RESUMO

Improving dairy cow feed efficiency is critical to the sustainability and profitability of dairy production, yet the underlying mechanisms that contribute to individual cow variation in feed efficiency are not fully understood. The objectives of this study were to (1) identify genes and associated pathways that are altered in cows with high- or low-residual feed intake (RFI) using RNA sequencing, and (2) determine if rumen-protected choline supplementation during mid-lactation would influence performance or feed efficiency. Mid-lactation (134 ± 20 days in milk) multiparous Holstein cows were randomly assigned to either supplementation of 0 g/d supplementation (CTL; n = 32) or 30 g/d of a rumen-protected choline product (RPC; 13.2 g choline ion; n = 32; Balchem Corp., New Hampton, NY, USA). Residual feed intake was determined as dry matter intake regressed on milk energy output, days in milk, body weight change, metabolic body weight, and dietary treatment. The 12 cows with the highest RFI (low feed efficient; LE) and 12 cows with the lowest RFI (high feed efficient; HE), balanced by dietary treatment, were selected for blood, liver, and muscle analysis. No differences in production or feed efficiency were detected with RPC supplementation, although albumin was greater and arachidonic acid tended to be greater in RPC cows. Concentrations of ß-hydroxybutyrate were greater in HE cows. Between HE and LE, 268 and 315 differentially expressed genes in liver and muscle tissue, respectively, were identified through RNA sequencing. Pathway analysis indicated differences in cell cycling, oxidative stress, and immunity in liver and differences in glucose and fatty acid pathways in muscle. The current work indicates that unique differences in liver and muscle post-absorptive nutrient metabolism contribute to sources of variation in feed efficiency and that differences in amino acid and fatty acid oxidation, cell cycling, and immune function should be further examined.

11.
J Dairy Sci ; 106(12): 9410-9425, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641318

RESUMO

Social dynamics in group-housed animals can have important effects on their welfare, feed efficiency, and production potential. Our objectives were to: (1) evaluate the effects of parity and social grouping on competition behavior, feeding patterns, and feed efficiency, and (2) investigate cow-level relationships between competition and feeding behavior, production, and feed efficiency. Fifty-nine Holstein cows (144.5 ± 21.8 starting days in milk, mean ± SD) were housed in a freestall pen with 30 Roughage Intake Control (RIC) bins. We evaluated the effects of parity (primiparous [PR, n = 29] vs. multiparous [MU, n = 30]) and group composition at the feed bunk (same-parity [SM, n = 39] vs. mixed-parity [MX, n = 20, 50% of each parity]) with a 2 × 2 factorial design (SM-MU: n = 20; SM-PR: n = 19; MX-MU: n = 10; MX-PR: n = 10) on competition behavior, feeding patterns, and feed efficiency. Within the pen, groups of 9 to 10 cows were considered subgroups and assigned to treatments defined by sets of 5 assigned bins (2:1 stocking density). Feed bunk competition and feeding patterns were recorded via continuous video in the first hour after morning feed delivery and 24-h RIC data, respectively. Residual feed intake (RFI) was calculated as the difference between predicted and observed dry matter intake (DMI) after accounting for known energy sinks. Linear models were used to evaluate the effects and interactions of parity and group composition on competition, feeding behavior, and feed efficiency. Within-cow correlations were performed between competition, feeding behavior, and RFI. Cows in MX, compared with SM, were involved in more competitive interactions [mean (95% CI): competitive contacts: 11.5 (8.1, 16.3) vs. 7.2 (5.5, 9.3) events; displacements: 4.0 (3.0, 5.3) vs. 2.1 (1.7, 2.7) events, and replacements: 3.5 (2.6, 4.7) vs. 1.9 (1.5, 2.5) events]. Cows in MX vs. those in SM had more bunk visits/meal ( 4.3 [3.9, 4.8] vs. 3.7 [3.4, 3.9] visits/meal) and longer meals (31.2 vs. 27.4 ± 0.9 min/meal) and tended to have higher RFI (0.41 ± 0.3 vs. -0.21 ± 0.2) and were therefore less feed efficient. Multiparous versus PR cows had greater DMI per day (29.3 ± 0.6 vs. 25.5 ± 0.4 kg/d) and per meal (4.2 [4.0, 4.4] vs. 3.4 [3.2, 3.6] kg/meal), faster eating rates (0.14 [0.13, 0.15] vs. 0.12 [0.11, 0.13] kg/min), and fewer bunk visits/d (26.6 [24.0, 29.4] vs. 32.8 [29.7, 35.9]). Regardless of grouping or parity, cows with shorter latencies to first visit the bunk after feed delivery were involved in more competition and tended to be less feed efficient. Overall, individual cow- and group-level relationships among competition, feeding behavior, and feed efficiency play an important role in feed bunk social dynamics. At a competitive 2:1 stocking density, mixed-parity groups for lactating cows may have potentially negative animal welfare and feed efficiency implications that should be considered when selecting grouping strategies on the farm.


Assuntos
Lactação , Interação Social , Gravidez , Feminino , Bovinos , Animais , Indústria de Laticínios , Leite , Comportamento Alimentar , Ração Animal , Dieta/veterinária
12.
Animals (Basel) ; 13(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37443860

RESUMO

Deciding when to replace dairy bulls presents a complex challenge for artificial insemination (AI) companies. These decisions encompass multiple factors, including a bull's age, predicted semen production, and estimated genetic merit. This study's purpose was to provide a practical, objective tool to assist in these decisions. We utilized a Markov Chain model to calculate the economic valuation of dairy bulls, incorporating key factors such as housing costs, collection and marketing expenses, and the bull's probable tenure in the herd. Data from a leading AI company were used to establish baseline values. The model further compared a bull's net present value to that of a potential young replacement, establishing a relative valuation (BullVal$). The range of BullVal$ observed spanned from -USD 316,748 to USD 497,710. Interestingly, the model recommended culling for 49% of the bulls based on negative BullVal$. It was found that a bull's net present value was primarily influenced by market allocation and pricing, coupled with the interaction of semen production and genetic merit. This study offers a robust, data-driven model to guide bull replacement decisions in AI companies. Key determinants of a bull's valuation included market dynamics, semen production rates, and genetic merit.

13.
JDS Commun ; 4(3): 201-204, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37360126

RESUMO

Residual feed intake (RFI) has been used as a measure of feed efficiency in farm animals. In lactating dairy cattle, RFI is typically obtained as the difference between dry matter intake observations and predictions from regression on known energy sinks, and effects of parity, days in milk, and cohort. The impact of parity (lactation number) on the estimation of RFI is not well understood, so the objectives of this study were to (1) evaluate alternative RFI models in which the energy sinks (metabolic body weight, body weight change, and secreted milk energy) were nested or not nested within parity, and (2) estimate variance components and genetic correlations for RFI across parities. Data consisted of 72,474 weekly RFI records of 5,813 lactating Holstein cows collected from 2007 to 2022 in 5 research stations across the United States. Estimates of heritability, repeatability, and genetic correlations between weekly RFI for parities 1, 2, and 3 were obtained using bivariate repeatability animal models. The nested RFI model showed better goodness of fit than the nonnested model, and some partial regression coefficients of dry matter intake on energy sinks were heterogeneous between parities. However, the Spearman's rank correlation between RFI values calculated from nested and nonnested models was equal to 0.99. Similarly, Spearman's rank correlation between the RFI breeding values from these 2 models was equal to 0.98. Heritability estimates for RFI were equal to 0.16 for parity 1, 0.19 for parity 2, and 0.22 for parity 3. Repeatability estimates for RFI across weeks within parities were high, ranging from 0.51 to 0.57. Spearman's rank correlations of sires' breeding values were 0.99 between parities 1 and 2, 0.91 between parities 1 and 3, and 0.92 between parities 2 and 3. We conclude that nesting energy sinks within parity when computing RFI improves model goodness of fit, but the impact on the estimated breading values appears to be minimal.

14.
J Dairy Sci ; 106(7): 4825-4835, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37173255

RESUMO

Greater longevity is associated with lower replacement costs, higher average milk production, and fewer replacement heifers needed. Longevity data are obtained late in life, and for this reason stayability, defined as the probability of survival from birth until a certain age, can be used as an alternative measure. The objective of this study was to evaluate the effects of different type traits, inbreeding, and production level on the stayability of Jersey cows to various ages, and to assess trends over time. Data consisted of 460,172 to 204,658 stayability records, depending on length of the opportunity period, for survival from birth until 36, 48, 60, 72, or 84 mo of age. Threshold models were used to analyze the stayability traits, including different type traits, inbreeding coefficient, and within-herd production level as explanatory variables. Heritability estimates for stayability traits ranged from 0.05 (36 mo) to 0.22 (84 mo). As expected, the probability of survival decreased as age increased. Highly productive cows were more likely to survive than their poor-producing contemporaries regardless of age and the type trait evaluated. Our data indicate that farmers' selection decisions tend to punish poor production at early ages and reward high production at later stages. Inbreeding negatively affected the probability of survival, especially when inbreeding coefficients exceeded 10%, and this impact was most noticeable at 48 mo of age or later. Some type traits, such as stature and foot angle, had little effect on the probability of survival. Other type traits, such as strength, dairy form, rump width, and rear legs, showed higher probability of survival at intermediate scores, whereas other type traits, such as fore udder attachment, rear udder height, udder depth, and final score, showed higher probability of survival at higher scores. Finally, our results indicate that the probability of survival has decreased in the last decade, probably due to a greater number of heifers available and, therefore, higher culling rates.


Assuntos
Endogamia , Parto , Gravidez , Bovinos , Animais , Feminino , Fenótipo , Probabilidade , Longevidade , Lactação
15.
J Dairy Sci ; 106(2): 1089-1096, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494229

RESUMO

An artificial insemination (AI) company seeks to allocate semen units globally by balancing perceived demand with uncertain product supply, in what is an arduous subjective process. This study aimed to objectivize this process by providing a user-friendly linear programming model to allocate bulls' semen units to regions for the next trimester sales period based on maximum revenue, and to describe the features and outcomes of this model when applied to a sample bull herd and global demand scenario reflective of a leading AI company. The objective function of maximizing revenue was calculated by summing the product of units allocated by bull and region with purchase prices assigned by bull and region. Constraints considered were regional demand for overall units, regional preferences for specific genetic traits, bulls' production capacity, and percentage of bulls' units allocated to a single region. A sensitivity analysis was performed to identify the effects of variables and constraints on total revenue. Production, sales, and bull demographic data from 2018 to 2021 from a leading AI company were used to establish base values and build a sample herd of 61 bulls and 5 global regions. The case study provided a maximum revenue of $8,287,197 in semen sales per trimester, with 634,700 units allocated. Of the 61 bulls in the case study, 9 were not allocated to any region. The most limiting constraint was regional demand, which resulted in a surplus of 274,564 units not allocated. A sensitivity analysis confirmed this finding, with the largest shadow prices assigned to regional demands, and indicated that a single unit increase in regional demand would add up to $14.84 in total revenue.


Assuntos
Líquidos Corporais , Sêmen , Bovinos , Animais , Masculino , Perfil Genético , Inseminação Artificial/veterinária , Fenótipo
16.
Front Genet ; 13: 1017490, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386803

RESUMO

The impact of genomic epistasis effects on the accuracy of predicting the phenotypic values of residual feed intake (RFI) in U.S. Holstein cows was evaluated using 6215 Holstein cows and 78,964 SNPs. Two SNP models and seven epistasis models were initially evaluated. Heritability estimates and the accuracy of predicting the RFI phenotypic values from 10-fold cross-validation studies identified the model with SNP additive effects and additive × additive (A×A) epistasis effects (A + A×A model) to be the best prediction model. Under the A + A×A model, additive heritability was 0.141, and A×A heritability was 0.263 that consisted of 0.260 inter-chromosome A×A heritability and 0.003 intra-chromosome A×A heritability, showing that inter-chromosome A×A effects were responsible for the accuracy increases due to A×A. Under the SNP additive model (A-only model), the additive heritability was 0.171. In the 10 validation populations, the average accuracy for predicting the RFI phenotypic values was 0.246 (with range 0.197-0.333) under A + A×A model and was 0.231 (with range of 0.188-0.319) under the A-only model. The average increase in the accuracy of predicting the RFI phenotypic values by the A + A×A model over the A-only model was 6.49% (with range of 3.02-14.29%). Results in this study showed A×A epistasis effects had a positive impact on the accuracy of predicting the RFI phenotypic values when combined with additive effects in the prediction model.

17.
J Dairy Sci ; 105(9): 7564-7574, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863925

RESUMO

Residual feed intake (RFI) is commonly used to measure feed efficiency but individual intake recording systems are needed. Feeding behavior may be used as an indicator trait for feed efficiency using less expensive precision livestock farming technologies. Our goal was to estimate genetic parameters for feeding behavior and the genetic correlations with feed efficiency in Holstein cows. Data consisted of 75,877 daily feeding behavior records of 1,328 mid-lactation Holstein cows in 31 experiments conducted from 2009 to 2020 with an automated intake recording system. Feeding behavior traits included number of feeder visits per day, number of meals per day, duration of each feeder visit, duration of each meal, total duration of feeder visits, intake per visit, intake per meal [kg of dry matter (DM)], feeding rate per visit, and feeding rate per meal (kg of DM per min). The meal criterion was estimated as 26.4 min, which means that any pair of feeder visits separated by less than 26.4 min were considered part of the same meal. The statistical model included lactation and days in milk as fixed effects, and experiment-treatment, animal, and permanent environment as random effects. Genetic parameters for feeding behavior traits were estimated using daily records and weekly averages. Estimates of heritability for daily feeding behavior traits ranged from 0.09 ± 0.02 (number of meals; mean ± standard error) to 0.23 ± 0.03 (feeding rate per meal), with repeatability estimates ranging from 0.23 ± 0.01 (number of meals) to 0.52 ± 0.02 (number of feeder visits). Estimates of heritability for weekly averages of feeding behavior traits ranged from 0.19 ± 0.04 (number of meals) to 0.32 ± 0.04 (feeding rate per visit), with repeatability estimates ranging from 0.46 ± 0.02 (duration of each meal) to 0.62 ± 0.02 (feeding rate per visit and per meal). Most of the feeding behavior measures were strongly genetically correlated, showing that with more visits or meals per day, cows spend less time in each feeder visit or meal with lower intake per visit or meal. Weekly averages for feeding behavior traits were analyzed jointly with RFI and its components. Number of meals was genetically correlated with milk energy (0.48), metabolic body weight (-0.27), and RFI (0.19). Duration of each feeder visit and meal were genetically correlated with milk energy (0.43 and 0.44, respectively). Total duration of feeder visits per day was genetically correlated with DM intake (0.29), milk energy (0.62), metabolic body weight (-0.37), and RFI (0.20). Intake per visit and meal were genetically correlated with DM intake (0.63 and 0.87), milk energy (0.47 and 0.69), metabolic body weight (0.47 and 0.68), and RFI (0.31 and 0.65). Feeding rate was genetically correlated with DM intake (0.69), metabolic body weight (0.67), RFI (0.47), and milk energy (0.21). We conclude that measures of feeding behavior could be useful indicators of dairy cow feed efficiency, and individual cows that eat at a slower rate may be more feed efficient.


Assuntos
Ração Animal , Dieta , Ração Animal/análise , Animais , Peso Corporal , Bovinos/genética , Dieta/veterinária , Ingestão de Alimentos/genética , Comportamento Alimentar , Feminino , Lactação/genética , Leite/metabolismo
18.
Metabolites ; 11(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940626

RESUMO

Selection for more feed efficient dairy cows is key to improving sustainability and profitability of dairy production; however, underlying mechanisms contributing to individual animal feed efficiency are not fully understood. The objective of this study was to identify circulating metabolites, and pathways associated with those metabolites, that differ between efficient and inefficient Holstein dairy cows using targeted metabolite quantification and untargeted metabolomics. The top and bottom fifteen percent of cows (n = 28/group) with the lowest and highest residual feed intake in mid-lactation feed efficiency trials were grouped retrospectively as high-efficient (HE) and low-efficient (LE). Blood samples were collected for quantification of energy metabolites, markers of hepatic function, and acylcarnitines, in addition to a broader investigation using untargeted metabolomics. Short-chain acylcarnitines, C3-acylcarnitine, and C4-acylcarntine were lower in HE cows (n = 18/group). Untargeted metabolomics and multivariate analysis identified thirty-nine differential metabolites between HE and LE (n = 8/group), of which twenty-five were lower and fourteen were higher in HE. Pathway enrichment analysis indicated differences in tryptophan metabolism. Combined results from targeted metabolite quantification and untargeted metabolomics indicate differences in fatty acid and amino acid metabolism between HE and LE cows. These differences may indicate post-absorptive nutrient use efficiency as a contributor to individual animal variation in feed efficiency.

19.
Animals (Basel) ; 11(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068147

RESUMO

The objective of this study was to investigate the relationships between postpartum health disorders and mid-lactation performance, feed efficiency, and sensor-derived behavioral traits. Multiparous cows (n = 179) were monitored for health disorders for 21 days postpartum and enrolled in a 45-day trial between 50 to 200 days in milk, wherein feed intake, milk yield and components, body weight, body condition score, and activity, lying, and feeding behaviors were recorded. Feed efficiency was measured as residual feed intake and the ratio of fat- or energy-corrected milk to dry matter intake. Cows were classified as either having hyperketonemia (HYK; n = 72) or not (n = 107) and grouped by frequency of postpartum health disorders: none (HLT; n = 94), one (DIS; n = 63), or ≥2 (DIS+; n = 22). Cows that were diagnosed with HYK had higher mid-lactation yields of fat- and energy-corrected milk. No differences in feed efficiency were detected between HYK or health status groups. Highly active mid-lactation time was higher in healthy animals, and rumination time was lower in ≥4th lactation cows compared with HYK or DIS and DIS+ cows. Differences in mid-lactation behaviors between HYK and health status groups may reflect the long-term impacts of health disorders. The lack of a relationship between postpartum health and mid-lactation feed efficiency indicates that health disorders do not have long-lasting impacts on feed efficiency.

20.
J Dairy Sci ; 104(5): 5817-5826, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33663847

RESUMO

Selection of elite young dairy bulls by using genomic data shortened the generation interval and increased pressure to collect and market germplasm at an early age. The objectives of this study were (1) develop prediction models for daily, weekly, and monthly total sperm (TSp) production from collection history, health status, and management factors, and (2) assess the ability of these models to forecast future TSp production, as well as differences in prediction accuracy by seasonality or age of bull. Data consisted of 43,918 daily processing records from 1,037 Holstein and Jersey bulls between 10 and 28 mo of age at collection. Potential explanatory variables included year and season of collection, barn location, collection frequency, breed, scrotal circumference, TSp in previous months, health events, and age at arrival, first collection, and current collection. Linear regression, random forest (RF), Bayesian regularized neural network, model tree, multilayer perceptron neural network with multiple layers, and extreme learning machine were used to predict daily, weekly, and monthly TSp (R v3.5.1, https://www.r-project.org/). In the additive approach, all prior data were used for training; however, in the fixed-window approach, records from 3 previous months were used for age-based prediction, records from 4 previous months or 1 yr were used for the monthly date-based analyses, and records from 1 previous month or year were used for the weekly date-based analyses. Model performance was measured by root mean squared error (RMSE) and the correlation (r) between actual and predicted TSp in testing sets. In monthly analyses, RF with additive training performed best in age-based (RMSE = 13.6 billion cells, r = 0.93) and date-based (RMSE = 11.9, r = 0.94) prediction, compared with linear regression (age-based RMSE = 16.6, r = 0.89; date-based RMSE = 15.5, r = 0.90) and Bayesian regularized neural network (age-based RMSE = 14.1, r = 0.92). On average, RMSE was 0.93 or 0.14 billion cells greater with fixed 4-mo or 1-yr training windows, respectively, than in the additive analyses. The most important management variables affecting TSp were collection frequency, TSp in previous months, and age at collection. Results indicate RF models with additive training can predict TSp output of individual bulls with ≥85% accuracy up to 4 mo into the future. Spikes in accuracy were associated with sire summary times and company processing changes, and accuracy tended to stabilize when bulls reached 19 to 20 mo of age.


Assuntos
Genoma , Espermatozoides , Animais , Teorema de Bayes , Bovinos , Masculino , Redes Neurais de Computação , Escroto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...