Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 476, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696819

RESUMO

Eukaryotic algae rose to ecological relevance after the Neoproterozoic Snowball Earth glaciations, but the causes for this consequential evolutionary transition remain enigmatic. Cap carbonates were globally deposited directly after these glaciations, but they are usually organic barren or thermally overprinted. Here we show that uniquely-preserved cap dolostones of the Araras Group contain exceptional abundances of a newly identified biomarker: 25,28-bisnorgammacerane. Its secular occurrence, carbon isotope systematics and co-occurrence with other demethylated terpenoids suggest a mechanistic connection to extensive microbial degradation of ciliate-derived biomass in bacterially dominated ecosystems. Declining 25,28-bisnorgammacerane concentrations, and a parallel rise of steranes over hopanes, indicate the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation. Nutrient levels already increased during the Cryogenian and were a prerequisite, but not the ultimate driver for the algal rise. Intense predatory pressure by bacterivorous protists may have irrevocably cleared self-sustaining cyanobacterial ecosystems, thereby creating the ecological opportunity that allowed for the persistent rise of eukaryotic algae to global importance.


Assuntos
Clorófitas/metabolismo , Cianobactérias/metabolismo , Sedimentos Geológicos/química , Evolução Biológica , Carbonatos/análise , Carbonatos/metabolismo , Clorófitas/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Ecossistema , Solo/química
2.
Sci Adv ; 4(11): eaat4556, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30498776

RESUMO

Past changes in the atmospheric concentration of carbon dioxide (Pco2) have had a major impact on earth system dynamics; yet, reconstructing secular trends of past Pco2 remains a prevalent challenge in paleoclimate studies. The current long-term Pco2 reconstructions rely largely on the compilation of many different proxies, often with discrepancies among proxies, particularly for periods older than 100 million years (Ma). Here, we reconstructed Phanerozoic Pco2 from a single proxy: the stable carbon isotopic fractionation associated with photosynthesis (Ɛp) that increases as Pco2 increases. This concept has been widely applied to alkenones, but here, we expand this concept both spatially and temporally by applying it to all marine phytoplankton via a diagenetic product of chlorophyll, phytane. We obtained data from 306 marine sediments and oils, which showed that Ɛp ranges from 11 to 24‰, agreeing with the observed range of maximum fractionation of Rubisco (i.e., 25 to 28‰). The observed secular Pco2 trend derived from phytane-based Ɛp mirrors the available compilations of Pco2 over the past 420 Ma, except for two periods in which our higher estimates agree with the warm climate during those time periods. Our record currently provides the longest secular trend in Pco2 based on a single marine proxy, covering the past 500 Ma of Earth history.


Assuntos
Atmosfera/análise , Dióxido de Carbono/metabolismo , Fósseis , Sedimentos Geológicos/análise , Fitoplâncton/fisiologia , Mudança Climática , Planeta Terra , Fotossíntese
3.
Proc Natl Acad Sci U S A ; 111(21): 7537-41, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821785

RESUMO

The mass extinction at the Cretaceous-Paleogene boundary, ∼ 66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling, a so-called "impact winter" phase. Here we document a major decline in sea surface temperature during the first months to decades following the impact event, using TEX86 paleothermometry of sediments from the Brazos River section, Texas. We interpret this cold spell to reflect, to our knowledge, the first direct evidence for the effects of the formation of dust and aerosols by the impact and their injection in the stratosphere, blocking incoming solar radiation. This impact winter was likely a major driver of mass extinction because of the resulting global decimation of marine and continental photosynthesis.


Assuntos
Mudança Climática/história , Evolução Planetária , Extinção Biológica , Sedimentos Geológicos/química , Planetas Menores , Modelos Teóricos , Temperatura , Aerossóis , Atmosfera/análise , Poeira , Foraminíferos/isolamento & purificação , Sedimentos Geológicos/microbiologia , História Antiga , Tamanho da Partícula , Texas
4.
Environ Microbiol ; 15(9): 2445-62, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23560451

RESUMO

Stratified lakes are important reservoirs of microbial diversity and provide habitats for niche differentiation of Archaea. In this study, we used a lipid biomarker/DNA-based approach to reveal the diversity and abundance of Archaea in the water column of Lake Challa (East Africa). Concentrations of intact polar lipid (IPL) crenarchaeol, a specific biomarker of Thaumarchaeota, were enhanced (1 ng l(-1) ) at the oxycline/nitrocline. The predominance of the more labile IPL hexose-phosphohexose crenarchaeol indicated the presence of an actively living community of Thaumarchaeota. Archaeal 16S rRNA clone libraries revealed the presence of thaumarchaeotal groups 1.1a and 1.1b at and above the oxycline. In the anoxic deep water, amoA gene abundance was an order of magnitude lower than at the oxycline and high abundance (∼90 ng l(-1) ) of an IPL with the acyclic glycerol dialkyl glycerol tetraether (GDGT-0) was evident. The predominance of archaeal 16S rRNA sequences affiliated to the uncultured crenarchaeota groups 1.2 and miscellaneous crenarchaeotic group (MCG) points to an origin of GDGT-0 from uncultured crenarchaeota. This study demonstrates the importance of thermal stratification and nutrient availability in the distribution of archaeal groups in lakes, which is relevant to constrain and validate temperature proxies based on archaeal GDGTs (i.e. TEX86 ).


Assuntos
Archaea/classificação , Archaea/genética , Biodiversidade , Lagos/microbiologia , Lipídeos de Membrana/análise , Microbiologia da Água , África Oriental , Crenarchaeota/classificação , Crenarchaeota/genética , Éteres de Glicerila/análise , Lagos/química , Filogenia , RNA Ribossômico 16S/genética
5.
Appl Environ Microbiol ; 77(12): 4147-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21515715

RESUMO

The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C(15) and C(16:1ω7C) as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.


Assuntos
Bactérias/química , Membrana Celular/química , Ácidos Dicarboxílicos/análise , Cromatografia Líquida , Cromatografia Gasosa-Espectrometria de Massas
6.
Science ; 315(5819): 1701-4, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17379805

RESUMO

We analyzed the distribution of branched tetraether membrane lipids derived from soil bacteria in a marine sediment record that was recovered close to the Congo River outflow, and the results enabled us to reconstruct large-scale continental temperature changes in tropical Africa that span the past 25,000 years. Tropical African temperatures gradually increased from approximately 21 degrees to 25 degrees C over the last deglaciation, which is a larger warming than estimated for the tropical Atlantic Ocean. A direct comparison with sea-surface temperature estimates from the same core revealed that the land-sea temperature difference was, through the thermal pressure gradient, an important control on central African precipitation patterns.

7.
Science ; 313(5793): 1623-5, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16973877

RESUMO

During the Last Glacial Maximum, the sea-level lowstand combined with the large extent of the Fennoscandian and British ice sheets led to the funneling of European continental runoff, resulting in the largest river system that ever drained the European continent. Here, we show an abrupt and early reactivation of the European hydrological cycle at the onset of the last deglaciation, leading to intense discharge of the Channel River into the Bay of Biscay. This freshwater influx, probably combined with inputs from proglacial or ice-dammed lakes, dramatically affected the hydrology of the region, both on land and in the ocean.

8.
Environ Microbiol ; 8(4): 648-57, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16584476

RESUMO

The 16S ribosomal DNA based distinction between the bacterial and archaeal domains of life is strongly supported by the membrane lipid composition of the two domains; Bacteria generally contain dialkyl glycerol diester lipids, whereas Archaea produce isoprenoid dialkyl glycerol diether and membrane-spanning glycerol dialkyl glycerol tetraether (GDGT) lipids. Here we show that a new group of ecologically abundant membrane-spanning GDGT lipids, containing branched instead of isoprenoid carbon skeletons, are of a bacterial origin. This was revealed by examining the stereochemistry of the glycerol moieties of those branched tetraether membrane lipids, which was found to be the bacterial 1,2-di-O-alkyl-sn-glycerol stereoconfiguration and not the 2,3-di-O-alkyl-sn-glycerol stereoconfiguration as in archaeal membrane lipids. In addition, unequivocal evidence for the presence of cyclopentyl moieties in these bacterial membrane lipids was obtained by NMR. The biochemical traits of biosynthesis of tetraether membrane lipids and the formation of cyclopentyl moieties through internal cyclization, which were thought to be specific for the archaeal lineage of descent, thus also occur in the bacterial domain of life.


Assuntos
Archaea/química , Bactérias Anaeróbias , Éteres de Glicerila/análise , Lipídeos de Membrana/análise , Sphagnopsida/microbiologia , Archaea/crescimento & desenvolvimento , Bactérias Anaeróbias/química , Bactérias Anaeróbias/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Estrutura Molecular , Filogenia , Estereoisomerismo
9.
FEMS Microbiol Lett ; 239(1): 51-6, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15451100

RESUMO

The presence and distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), lipids that constitute the membranes of Archaea, have been investigated in a 50-cm long core from a Swedish peat bog. In the acrotelm, the periodically water saturated and thus oxic upper layer of the peat bog, only minor amounts of GDGTs were found. These amounts increase considerably in the catotelm, the continuously water saturated and consequently anoxic lower layer of the peat bog. Based on earlier analyses of GDGTs in different settings and on 16S rDNA results from literature, these lipids are likely derived from methanogenic Archaea. Crenarchaeol, previously only found in marine settings and in fresh water lakes, has also been found in this peat bog. Contrary to the other GDGTs, crenarchaeol concentrations remain relatively constant throughout the peat core, suggesting that they are produced by Crenarchaeota thriving in the oxic part of the peat bog and possibly also in the anoxic part.


Assuntos
Crenarchaeota/química , Euryarchaeota/química , Lipídeos de Membrana/análise , Crenarchaeota/classificação , Ecossistema , Euryarchaeota/classificação , Água Doce/microbiologia , Éteres de Glicerila/análise , Microbiologia do Solo , Sphagnopsida , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA