Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171532, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458439

RESUMO

Antibiotic resistance is a growing global concern, but our understanding of the spread of resistant bacteria in remote regions remains limited. While some level of intrinsic resistance likely contributes to reduced susceptibility to antimicrobials in the environment, it is evident that human actions, particularly the (mis)use of antibiotics, play a significant role in shaping the environmental resistome, even in seemingly distant habitats like glacier ice sheets. Our research aims to bridge this knowledge gap by investigating the direct influence of human activities on the presence of antibiotic-resistant bacteria in various habitats. To achieve a comprehensive assessment of anthropogenic impact across diverse and seemingly isolated sampling sites, we developed an innovative approach utilizing Corine Land Cover data and heatmaps generated from sports activity trackers. This method allowed us to make meaningful comparisons across relatively pristine environments. Our findings indicate a noteworthy increase in culturable antibiotic-resistant bacteria with heightened human influence, as evidenced by our analysis of glacier, snow, and lake water samples. Notably, the most significant concentrations of antibiotic-resistant and multidrug-resistant microorganisms were discovered in two highly impacted sampling locations, namely the Tux Glacier and Gas Station Ellmau.


Assuntos
Antibacterianos , Bactérias , Humanos , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Ecossistema
2.
ACS Infect Dis ; 10(3): 938-950, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329933

RESUMO

The search for new anti-infectives based on metal complexes is gaining momentum. Among the different options taken by researchers, the one involving the use of organometallic complexes is probably the most successful one with a compound, namely, ferroquine, already in clinical trials against malaria. In this study, we describe the preparation and in-depth characterization of 10 new (organometallic) derivatives of the approved antifungal drug fluconazole. Our rationale is that the sterol 14α-demethylase is an enzyme part of the ergosterol biosynthesis route in Trypanosoma and is similar to the one in pathogenic fungi. To demonstrate our postulate, docking experiments to assess the binding of our compounds with the enzyme were also performed. Our compounds were then tested on a range of fungal strains and parasitic organisms, including the protozoan parasite Trypanosoma cruzi (T. cruzi) responsible for Chagas disease, an endemic disease in Latin America that ranks among some of the most prevalent parasitic diseases worldwide. Of high interest, the two most potent compounds of the study on T. cruzi that contain a ferrocene or cobaltocenium were found to be harmless for an invertebrate animal model, namely, Caenorhabditis elegans (C. elegans), without affecting motility, viability, or development.


Assuntos
Fluconazol , Trypanosoma cruzi , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Metalocenos , Antiparasitários/farmacologia , Caenorhabditis elegans , Inibidores de 14-alfa Desmetilase/química , Trypanosoma cruzi/química
3.
J Med Chem ; 66(23): 15867-15882, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38009931

RESUMO

Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens, including fungal infections. Herein, we show that the simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from that of the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and neglected tropical diseases (NTDs) targeted for elimination by 2030.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Doenças Negligenciadas/tratamento farmacológico , Fluconazol , Micoses/tratamento farmacológico
4.
Front Microbiol ; 14: 1212378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601352

RESUMO

Antibiotic-resistant microbes pose one of the biggest challenges of the current century. While areas with proximity to human impact are closely studied, a lot is yet to learn about antimicrobial resistance in remote regions like the cryosphere. Nowadays, antibiotic (AB) resistance is considered a pollution that has reached the Earth's most pristine areas. However, monitoring of resistant environmental bacteria therein faces several challenges that inhibit scientific progress in this field. Due to many cultivation-based antibiotic susceptibility tests being optimized for mesophilic pathogenic microorganisms, many researchers opt for expensive molecular biological approaches to detect antibiotic resistance in the cryosphere. However, some disadvantages of these methods prohibit effective comprehensive monitoring of resistant bacteria in pristine areas, hence we suggest established cultivation-based approaches when looking for antimicrobial resistance in the cryosphere. In this study, we compared two common antibiotic susceptibility tests and optimized them to meet the needs of psychrophilic microorganisms. The resulting cultures thereof originated from cryospheric habitats with differing anthropogenic impacts. The results show that these methods are applicable to detect antibiotic resistance in cryospheric habitats and could potentially increase the comparability between studies.

5.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425761

RESUMO

Drug resistance observed with many anti-infectives clearly highlights the need for new broad-spectrum agents to treat especially neglected tropical diseases (NTDs) caused by eukaryotic parasitic pathogens including fungal infections. Since these diseases target the most vulnerable communities who are disadvantaged by health and socio-economic factors, new agents should be, if possible, easy-to-prepare to allow for commercialization based on their low cost. In this study, we show that simple modification of one of the most well-known antifungal drugs, fluconazole, with organometallic moieties not only improves the activity of the parent drug but also broadens the scope of application of the new derivatives. These compounds were highly effective in vivo against pathogenic fungal infections and potent against parasitic worms such as Brugia, which causes lymphatic filariasis and Trichuris, one of the soil-transmitted helminths that infects millions of people globally. Notably, the identified molecular targets indicate a mechanism of action that differs greatly from the parental antifungal drug, including targets involved in biosynthetic pathways that are absent in humans, offering great potential to expand our armamentarium against drug-resistant fungal infections and NTDs targeted for elimination by 2030. Overall, the discovery of these new compounds with broad-spectrum activity opens new avenues for the development of treatments for several current human infections, either caused by fungi or by parasites, including other NTDs, as well as newly emerging diseases. ONE-SENTENCE SUMMARY: Simple derivatives of the well-known antifungal drug fluconazole were found to be highly effective in vivo against fungal infections, and also potent against the parasitic nematode Brugia, which causes lymphatic filariasis and against Trichuris, one of the soil-transmitted helminths that infects millions of people globally.

6.
Front Microbiol ; 13: 929738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312966

RESUMO

Sauerkraut is a traditionally fermented cabbage, and recent evidence suggests that it has beneficial properties for human health. In this work, a multi-disciplinary approach was employed to characterize the fermentation process and gut health-promoting properties of locally produced, organic sauerkraut from two distinct producers, SK1 and SK2. 16S rRNA metataxonomics showed that bacterial diversity gradually decreased as fermentation progressed. Differences in sauerkraut microbiota composition were observed between the two producers, especially at the start of fermentation. Lactic acid bacteria (LAB) dominated the microbiota after 35 days, with Lactiplantibacillus being the dominant genus in both sauerkraut products, together with Leuconostoc and Paucilactobacillus in SK1, and with Pediococcus, Levilactibacillus, and Leuconostoc in SK2. LAB reached between 7 and 8 Log CFU/mL brine at the end of fermentation (35 days), while pH lowering happened within the first week of fermentation. A total of 220 LAB strains, corresponding to 133 RAPD-PCR biotypes, were successfully isolated. Lactiplantibacillus plantarum and Lactiplantibacillus pentosus accounted for 67% of all SK1 isolates, and Lactiplantibacillus plantarum/paraplantarum and Leuconostoc mesenteroides represented 72% of all the isolates from SK2. 1H-NMR analysis revealed significant changes in microbial metabolite profiles during the fermentation process, with lactic and acetic acids, as well as amino acids, amines, and uracil, being the dominant metabolites quantified. Sauerkraut brine did not affect trans-epithelial electrical resistance through a Caco-2 cell monolayer as a measure of gut barrier function. However, significant modulation of inflammatory response after LPS stimulation was observed in PBMCs-Caco-2 co-culture. Sauerkraut brine supported a robust inflammatory response to endotoxin, by increasing TNF-α and IL-6 production while also stimulating the anti-inflammatory IL-10, therefore suggesting positive resolution of inflammation after 24 h and supporting the potential of sauerkraut brine to regulate intestinal immune function.

7.
Environ Microbiol ; 24(10): 4771-4786, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876309

RESUMO

Phytoplasmas are obligatory intracellular bacteria that colonize the phloem of many plant species and cause hundreds of plant diseases worldwide. In nature, phytoplasmas are primarily transmitted by hemipteran vectors. While all phloem-feeding insects could in principle transmit phytoplasmas, only a limited number of species have been confirmed as vectors. Knowledge about factors that might determine the vector capacity is currently scarce. Here, we characterized the microbiomes of vector and non-vector species of apple proliferation (AP) phytoplasma 'Candidatus Phytoplasma mali' to investigate their potential role in the vector capacity of the host. We performed high-throughput 16S rRNA metabarcoding of the two principal AP-vectors Cacopsylla picta and Cacopsylla melanoneura and eight Cacopsylla species, which are not AP-vectors but co-occur in apple orchards. The microbiomes of all species are dominated by Carsonella, the primary endosymbiont of psyllids and a second uncharacterized Enterobacteriaceae endosymbiont. Each Cacopsylla species harboured a species-specific phylotype of both symbionts. Moreover, we investigated differences between the microbiomes of AP-vector versus non-vector species and identified the predominant endosymbionts but also Wolbachia and several minor taxa as potential indicator species. Our study highlights the importance of considering the microbiome in future investigations of potential factors influencing host vector competence. We investigated the potential role of symbiotic bacteria in the acquisition and transmission of phytoplasma. By comparing the two main psyillid vector species of Apple proliferation (AP) phytoplasma and eight co-occurring species, which are not able to vector AP-phytoplasma, we found differences in the microbial communities of AP-vector and non-vector species, which appear to be driven by the predominant symbionts in both vector species and Wolbachia and several minor taxa in the non-vector species. In contrast, infection with AP-phytoplasma did not affect microbiome composition in both vector species. Our study provides new insights into the endosymbiont diversity of Cacopsylla spp. and highlights the importance of considering the microbiome when investigating potential factors influencing host vector competence.


Assuntos
Hemípteros , Malus , Microbiota , Phytoplasma , Animais , Hemípteros/microbiologia , Malus/microbiologia , Microbiota/genética , Phytoplasma/genética , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética
8.
RSC Chem Biol ; 2(4): 1263-1273, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34458840

RESUMO

Fungal infections represent a global problem, notably for immunocompromised patients in hospital, COVID-19 patient wards and care home settings, and the ever-increasing emergence of multidrug resistant fungal strains is a sword of Damocles hanging over many healthcare systems. Azoles represent the mainstay of antifungal drugs, and their mode of action involves the binding mode of these molecules to the fungal lanosterol 14α-demethylase target enzyme. In this study, we have prepared and characterized four novel organometallic derivatives of the frontline antifungal drug fluconazole (1a-4a). Very importantly, enzyme inhibition and chemogenomic profiling demonstrated that lanosterol 14α-demethylase, as for fluconazole, was the main target of the most active compound of the series, (N-(ferrocenylmethyl)-2-(2,4-difluorophenyl)-2-hydroxy-N-methyl-3-(1H-1,2,4-triazol-1-yl)propan-1-aminium chloride, 2a). Transmission electron microscopy (TEM) studies suggested that 2a induced a loss in cell wall integrity as well as intracellular features ascribable to late apoptosis or necrosis. The impressive activity of 2a was further confirmed on clinical isolates, where antimycotic potency up to 400 times higher than fluconazole was observed. Also, 2a showed activity towards azole-resistant strains. This finding is very interesting since the primary target of 2a is the same as that of fluconazole, emphasizing the role played by the organometallic moiety. In vivo experiments in a mice model of Candida infections revealed that 2a reduced the fungal growth and dissemination but also ameliorated immunopathology, a finding suggesting that 2a is active in vivo with added activity on the host innate immune response.

9.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064267

RESUMO

Sustainability of aquaculture is tied to the origin of feed ingredients. In search of sustainable fish meal-free formulations for rainbow trout, we evaluated the effect of Hermetia illucens meal (H) and poultry by-product meal (P), singly (10, 30, and 60% of either H or P) or in combination (10% H + 50% P, H10P50), as partial replacement of vegetable protein (VM) on gut microbiota (GM), inflammatory, and immune biomarkers. Fish fed the mixture H10P50 had the best growth performance. H, P, and especially the combination H10P50 partially restored α-diversity that was negatively affected by VM. Diets did not differ in the Firmicutes:Proteobacteria ratio, although the relative abundance of Gammaproteobacteria was reduced in H and was higher in P and in the fishmeal control. H had higher relative abundance of chitin-degrading Actinomyces and Bacillus, Dorea, and Enterococcus. Actinomyces was also higher in H feed, suggesting feed-chain microbiome transmission. P increased the relative abundance of protein degraders Paeniclostridium and Bacteroidales. IL-1ß, IL-10, TGF-ß, COX-2, and TCR-ß gene expression in the midgut and head kidney and plasma lipopolysaccharide (LPS) revealed that the diets did not compromise the gut barrier function or induce inflammation. H, P, and H10P50 therefore appear valid protein sources in fishmeal-free aquafeeds.


Assuntos
Proteínas Animais da Dieta/metabolismo , Biomarcadores/metabolismo , Microbioma Gastrointestinal/fisiologia , Inflamação/metabolismo , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/microbiologia , Ração Animal , Animais , Aquicultura/métodos , Dieta/métodos , Rim Cefálico/metabolismo , Insetos/metabolismo , Aves Domésticas/metabolismo , Produtos Avícolas
10.
Metabolites ; 10(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202828

RESUMO

The success of antifungal therapies is often hindered by the limited number of available drugs. To close the gap in the antifungal pipeline, the search of novel leads is of primary importance, and here the exploration of neglected plants has great promise for the discovery of new principles. Through bioassay-guided isolation, uliginosin B and five new dimeric acylphloroglucinols (uliginosins C-D, and 3'prenyl uliginosins B-D), besides cembrenoids, have been isolated from the lipophilic extract of Hypericum mexicanum. Their structures were elucidated by a combination of Liquid Chromatography - Mass Spectrometry LC-MS and Nuclear Magnetic Resonance (NMR) measurements. The compounds showed strong anti-Candida activity, also against fluconazole-resistant strains, with fungal growth inhibition properties at concentrations ranging from 3 to 32 µM, and reduced or absent cytotoxicity against human cell lines. A chemogenomic screen of 3'prenyl uliginosin B revealed target genes that are important for cell cycle regulation and cytoskeleton assembly in fungi. Taken together, our study suggests dimeric acylphloroglucinols as potential candidates for the development of alternative antifungal therapies.

11.
Insect Biochem Mol Biol ; 127: 103474, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007407

RESUMO

Phytoplasmas are bacterial plant pathogens that are detrimental to many plants and cause devastating effects on crops. They are not viable outside their host plants and depend on specific insect vectors for their transmission. So far, research has largely focused on plant-pathogen interactions, while the complex interactions between phytoplasmas and insect vectors are far less understood. Here, we used next-generation sequencing to investigate how transcriptional profiles of the vector psyllid Cacopsylla melanoneura (Hemiptera, Psyllidae) are altered during infection by the bacterium Candidatus Phytoplasma mali (P. mali), which causes the economically important apple proliferation disease. This first de novo transcriptome assembly of an apple proliferation vector revealed that mainly genes involved in small GTPase mediated signal transduction, nervous system development, adhesion, reproduction, actin-filament based and rhythmic processes are significantly altered upon P. mali infection. Furthermore, the presence of P. mali is accompanied by significant changes in carbohydrate and polyol levels, as revealed by metabolomics analysis. Taken together, our results suggest that infection with P. mali impacts on the insect vector physiology, which in turn likely affects the ability of the vector to transmit phytoplasma.


Assuntos
Hemípteros/microbiologia , Phytoplasma/fisiologia , Doenças das Plantas/microbiologia , Transcriptoma , Animais , Insetos Vetores/microbiologia , Malus/microbiologia
12.
J Environ Manage ; 267: 110633, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32349955

RESUMO

This study presents the results of semi-pilot scale anaerobic digestion tests conducted under dry thermophilic conditions with the addition of biochar (6% on fresh mass basis of inoculum), derived from an industrial gasification plant, for determining biogas and biomethane production from organic fraction of municipal solid waste. By using two types of inocula (from a full-scale dry anaerobic digestion plant and from lab-scale biomethanation tests), the obtained experimental results did not show significant increase in methane yield related to the presence of biochar (330.40 NL CH4 kgVS-1 using plant inoculum; 335.41 NL CH4 kgVS-1 using plant inoculum with biochar, 311.78 NL CH4 kgVS-1 using lab-inoculum and 366.43 NL CH4 kgVS-1 using lab-inoculum with biochar), but led to significant changes in the microbial community composition. These results are likely related with the specific biochar physical-chemical features and low adsorption potential. Resulting digestate quality was also investigated: biochar-enriched digestates were characterized by increased biological stability (809 ± 264 mg O2 kgVS-1 h-1 vs. 554 ± 76 mg O2 kgVS-1 h-1 for biochar-free and biochar-enriched digestates, respectively), lower heavy metals concentrations (with the exception of Cd), but higher polycyclic aromatic hydrocarbons content, with a reported maximum concentration of 8.9 mgPAH kgTS-1 for biochar-enriched digestate derived from AD test with lab-inoculum, which could trigger non-compliance with regulation limits for agricultural reuse of digestates. However, phytotoxicity assessments showed a decreased toxicity of biochar-containing digestates when compared to biochar-free digestates.


Assuntos
Biocombustíveis , Resíduos Sólidos , Anaerobiose , Reatores Biológicos , Carvão Vegetal , Metano
13.
Environ Microbiol ; 21(1): 50-71, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30246283

RESUMO

The quest to discover the variety of ecological niches inhabited by Saccharomyces cerevisiae has led to research in areas as diverse as wineries, oak trees and insect guts. The discovery of fungal communities in the human gastrointestinal tract suggested the host's gut as a potential reservoir for yeast adaptation. Here, we report the existence of yeast populations associated with the human gut (HG) that differ from those isolated from other human body sites. Phylogenetic analysis on 12 microsatellite loci and 1715 combined CDSs from whole-genome sequencing revealed three subclusters of HG strains with further evidence of clonal colonization within the host's gut. The presence of such subclusters was supported by other genomic features, such as copy number variation, absence/introgressions of CDSs and relative polymorphism frequency. Functional analysis of CDSs specific of the different subclusters suggested possible alterations in cell wall composition and sporulation features. The phenotypic analysis combined with immunological profiling of these strains further showed that sporulation was related with strain-specific genomic characteristics in the immune recognition pattern. We conclude that both genetic and environmental factors involved in cell wall remodelling and sporulation are the main drivers of adaptation in S. cerevisiae populations in the human gut.


Assuntos
Evolução Molecular , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Insetos/microbiologia , Saccharomyces cerevisiae/genética , Animais , Variações do Número de Cópias de DNA , Genoma Fúngico , Genômica , Humanos , Microbiota , Repetições de Microssatélites , Filogenia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/isolamento & purificação
14.
Front Pharmacol ; 9: 382, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755350

RESUMO

During the last two decades incidences of fungal infections dramatically increased and the often accompanying failure of available antifungal therapies represents a substantial clinical problem. The urgent need for novel antimycotics called particular attention to the study of natural products. The genus Hypericum includes many species that are used in the traditional medicine to treat pathological states like inflammations and infections caused by fungi. However, despite the diffused use of Hypericum-based products the antifungal potential of the genus is still poorly investigated. In this study five Hypericum species autochthonous of Central and Eastern Europe were evaluated regarding their polyphenolic content, their toxicological safety and their antifungal potential against a broad panel of clinical fungal isolates. LC-MS analysis led to the identification and quantification of 52 compounds, revealing that Hypericum extracts are rich sources of flavonols, benzoates and cinnamates, and of flavan-3-ols. An in-depth screen of the biological activity of crude extracts clearly unveiled H. hircinum subsp. majus as a promising candidate species for the search of novel antifungals. H. hircinum is diffused in the Mediterranean basin from Spain to Turkey where it is traditionally used to prepare a herbal tea indicated for the treatment of respiratory tract disorders, several of which are caused by fungi. Noteworthy, the infusion of H. hircinum subsp. majus excreted broad antifungal activity against Penicillium, Aspergillus and non-albicans Candida isolates comprising strains both sensitive and resistant to fluconazole. Additionally, it showed no cytotoxicity on human cells and the chemical characterization of the H. hircinum subsp. majus infusion revealed high amounts of the metabolite hyperoside. These results scientifically support the traditional use of H. hircinum extracts for the treatment of respiratory tract infections and suggest the presence of exploitable antifungal principles for further investigations aimed at developing novel antifungal therapies.

15.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28808688

RESUMO

Regulated erroneous protein translation (adaptive mistranslation) increases proteome diversity and produces advantageous phenotypic variability in the human pathogen Candida albicans. It also increases fitness in the presence of fluconazole, but the underlying molecular mechanism is not understood. To address this question, we evolved hypermistranslating and wild-type strains in the absence and presence of fluconazole and compared their fluconazole tolerance and resistance trajectories during evolution. The data show that mistranslation increases tolerance and accelerates the acquisition of resistance to fluconazole. Genome sequencing, array-based comparative genome analysis, and gene expression profiling revealed that during the course of evolution in fluconazole, the range of mutational and gene deregulation differences was distinctively different and broader in the hypermistranslating strain, including multiple chromosome duplications, partial chromosome deletions, and polyploidy. Especially, the increased accumulation of loss-of-heterozygosity events, aneuploidy, translational and cell surface modifications, and differences in drug efflux seem to mediate more rapid drug resistance acquisition under mistranslation. Our observations support a pivotal role for adaptive mistranslation in the evolution of drug resistance in C. albicans. IMPORTANCE Infectious diseases caused by drug-resistant fungi are an increasing threat to public health because of the high mortality rates and high costs associated with treatment. Thus, understanding of the molecular mechanisms of drug resistance is of crucial interest for the medical community. Here we investigated the role of regulated protein mistranslation, a characteristic mechanism used by C. albicans to diversify its proteome, in the evolution of fluconazole resistance. Such codon ambiguity is usually considered highly deleterious, yet recent studies found that mistranslation can boost adaptation in stressful environments. Our data reveal that CUG ambiguity diversifies the genome in multiple ways and that the full spectrum of drug resistance mechanisms in C. albicans goes beyond the traditional pathways that either regulate drug efflux or alter the interactions of drugs with their targets. The present work opens new avenues to understand the molecular and genetic basis of microbial drug resistance.

16.
Front Pharmacol ; 8: 170, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424620

RESUMO

The development of compounds able to modify biological functions largely took advantage of parallel synthesis to generate a broad chemical variance of compounds to be tested for the desired effect(s). The budding yeast Saccharomyces cerevisiae is a model for pharmacological studies since a long time as it represents a relatively simple system to explore the relations among chemical variance and bioactivity. To identify relations between the chemical features of the molecules and their activity, we delved into the effects of a library of small compounds on the viability of a set of S. cerevisiae strains. Thanks to the high degree of chemical diversity of the tested compounds and to the measured effect on the yeast growth rate, we were able to scale-down the chemical library and to gain information on the most effective structures at the substituent level. Our results represent a valuable source for the selection, rational design, and optimization of bioactive compounds.

17.
Microbiome ; 5(1): 32, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28283029

RESUMO

BACKGROUND: A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. RESULTS: Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. CONCLUSIONS: Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.


Assuntos
Microbiologia do Ar , Bactérias/isolamento & purificação , Clima Desértico , Poeira/análise , Microbiota , Vento , África do Norte , Bactérias/classificação , Bactérias/genética , Bactérias/patogenicidade , Biodiversidade , Mudança Climática , Ecossistema , Aquecimento Global , Itália , Metagenômica , Consórcios Microbianos , Saúde Pública , Estações do Ano , Dióxido de Silício
18.
EMBO J ; 36(6): 761-782, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28100675

RESUMO

In innate immune responses, induction of type-I interferons (IFNs) prevents virus spreading while viral replication is delayed by protein synthesis inhibition. We asked how cells perform these apparently contradictory activities. Using single fibroblast monitoring by flow cytometry and mathematical modeling, we demonstrate that type-I IFN production is linked to cell's ability to enter dsRNA-activated PKR-dependent translational arrest and then overcome this inhibition by decreasing eIF2α phosphorylation through phosphatase 1c cofactor GADD34 (Ppp1r15a) expression. GADD34 expression, shown here to be dependent on the IRF3 transcription factor, is responsible for a biochemical cycle permitting pulse of IFN synthesis to occur in cells undergoing protein synthesis inhibition. Translation arrest is further demonstrated to be key for anti-viral response by acting synergistically with MAVS activation to amplify TBK1 signaling and IFN-ß mRNA transcription, while GADD34-dependent protein synthesis recovery contributes to the heterogeneous expression of IFN observed in dsRNA-activated cells.


Assuntos
Regulação da Expressão Gênica , Interferon beta/metabolismo , Biossíntese de Proteínas , Proteína Fosfatase 1/metabolismo , RNA de Cadeia Dupla/imunologia , RNA de Cadeia Dupla/metabolismo , Animais , Células Cultivadas , Fibroblastos/imunologia , Fibroblastos/virologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Imunidade Inata , Camundongos , Modelos Teóricos
19.
J Biol Chem ; 291(15): 7961-72, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26887946

RESUMO

The immune system is essential to maintain the mutualistic homeostatic interaction between the host and its micro- and mycobiota. Living as a commensal,Saccharomyces cerevisiaecould potentially shape the immune response in a significant way. We observed thatS. cerevisiaecells induce trained immunity in monocytes in a strain-dependent manner through enhanced TNFα and IL-6 production upon secondary stimulation with TLR ligands, as well as bacterial and fungal commensals. Differential chitin content accounts for the differences in training properties observed among strains, driving induction of trained immunity by increasing cytokine production and direct antimicrobial activity bothin vitroandin vivo These chitin-induced protective properties are intimately associated with its internalization, identifying a critical role of phagosome acidification to facilitate microbial digestion. This study reveals how commensal and passenger microorganisms could be important in promoting health and preventing mucosal diseases by modulating host defense toward pathogens and thus influencing the host microbiota-immune system interactions.


Assuntos
Quitina/imunologia , Imunidade Inata , Monócitos/microbiologia , Saccharomyces cerevisiae/imunologia , Animais , Parede Celular/imunologia , Humanos , Interleucina-6/imunologia , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Fagocitose , Fator de Necrose Tumoral alfa/imunologia
20.
J Cell Biol ; 210(7): 1133-52, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26416964

RESUMO

Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain-containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17-positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4-treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.


Assuntos
Autofagia/imunologia , Células Dendríticas/imunologia , Interleucina-4/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Lisossomos/imunologia , Animais , Autofagia/genética , Brucella abortus/imunologia , Células Dendríticas/citologia , Interleucina-4/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , Complexos Multiproteicos/genética , Complexos Multiproteicos/imunologia , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...