Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 434(9): 167562, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35351518

RESUMO

E. coli single-stranded-DNA binding protein (EcSSB) displays nearest-neighbor (NN) and non-nearest-neighbor (NNN)) cooperativity in binding ssDNA during genome maintenance. NNN cooperativity requires the intrinsically-disordered linkers (IDL) of the C-terminal tails. Potassium glutamate (KGlu), the primary E. coli salt, promotes NNN-cooperativity, while KCl inhibits it. We find that KGlu promotes compaction of a single polymeric SSB-coated ssDNA beyond what occurs in KCl, indicating a link of compaction to NNN-cooperativity. EcSSB also undergoes liquid-liquid phase separation (LLPS), inhibited by ssDNA binding. We find that LLPS, like NNN-cooperativity, is promoted by increasing [KGlu] in the physiological range, while increasing [KCl] and/or deletion of the IDL eliminate LLPS, indicating similar interactions in both processes. From quantitative determinations of interactions of KGlu and KCl with protein model compounds, we deduce that the opposing effects of KGlu and KCl on SSB LLPS and cooperativity arise from their opposite interactions with amide groups. KGlu interacts unfavorably with the backbone (especially Gly) and side chain amide groups of the IDL, promoting amide-amide interactions in LLPS and NNN-cooperativity. By contrast, KCl interacts favorably with these amide groups and therefore inhibits LLPS and NNN-cooperativity. These results highlight the importance of salt interactions in regulating the propensity of proteins to undergo LLPS.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Ácido Glutâmico , Amidas/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Ácido Glutâmico/química , Transição de Fase , Ligação Proteica
2.
J Mol Biol ; 433(15): 167072, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34081984

RESUMO

Stalled DNA replication forks can result in incompletely replicated genomes and cell death. DNA replication restart pathways have evolved to deal with repair of stalled forks and E. coli Rep helicase functions in this capacity. Rep and an accessory protein, PriC, assemble at a stalled replication fork to facilitate loading of other replication proteins. A Rep monomer is a rapid and processive single stranded (ss) DNA translocase but needs to be activated to function as a helicase. Activation of Rep in vitro requires self-assembly to form a dimer, removal of its auto-inhibitory 2B sub-domain, or interactions with an accessory protein. Rep helicase activity has been shown to be stimulated by PriC, although the mechanism of activation is not clear. Using stopped flow kinetics, analytical sedimentation and single molecule fluorescence methods, we show that a PriC dimer activates the Rep monomer helicase and can also stimulate the Rep dimer helicase. We show that PriC can self-assemble to form dimers and tetramers and that Rep and PriC interact in the absence of DNA. We further show that PriC serves as a Rep processivity factor, presumably co-translocating with Rep during DNA unwinding. Activation is specific for Rep since PriC does not activate the UvrD helicase. Interaction of PriC with the C-terminal acidic tip of the ssDNA binding protein, SSB, eliminates Rep activation by stabilizing the PriC monomer. This suggests a likely mechanism for Rep activation by PriC at a stalled replication fork.


Assuntos
DNA Helicases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/química , Regulação Bacteriana da Expressão Gênica , Microscopia de Fluorescência , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Imagem Individual de Molécula
3.
Proc Natl Acad Sci U S A ; 114(46): 12178-12183, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087333

RESUMO

Escherichia coli UvrD DNA helicase functions in several DNA repair processes. As a monomer, UvrD can translocate rapidly and processively along ssDNA; however, the monomer is a poor helicase. To unwind duplex DNA in vitro, UvrD needs to be activated either by self-assembly to form a dimer or by interaction with an accessory protein. However, the mechanism of activation is not understood. UvrD can exist in multiple conformations associated with the rotational conformational state of its 2B subdomain, and its helicase activity has been correlated with a closed 2B conformation. Using single-molecule total internal reflection fluorescence microscopy, we examined the rotational conformational states of the 2B subdomain of fluorescently labeled UvrD and their rates of interconversion. We find that the 2B subdomain of the UvrD monomer can rotate between an open and closed conformation as well as two highly populated intermediate states. The binding of a DNA substrate shifts the 2B conformation of a labeled UvrD monomer to a more open state that shows no helicase activity. The binding of a second unlabeled UvrD shifts the 2B conformation of the labeled UvrD to a more closed state resulting in activation of helicase activity. Binding of a monomer of the structurally similar Escherichia coli Rep helicase does not elicit this effect. This indicates that the helicase activity of a UvrD dimer is promoted via direct interactions between UvrD subunits that affect the rotational conformational state of its 2B subdomain.


Assuntos
DNA Helicases/química , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Sítios de Ligação , Carbocianinas/química , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Expressão Gênica , Cinética , Microscopia de Fluorescência , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Imagem Individual de Molécula , Termodinâmica
4.
J Mol Biol ; 429(18): 2790-2801, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28782560

RESUMO

E. coli single strand (ss) DNA binding protein (SSB) is an essential protein that binds to ssDNA intermediates formed during genome maintenance. SSB homotetramers bind ssDNA in several modes that differ in occluded site size and cooperativity. High "unlimited" cooperativity is associated with the 35 site size ((SSB)35) mode at low [NaCl], whereas the 65 site size ((SSB)65) mode formed at higher [NaCl] (> 200mM), where ssDNA wraps completely around the tetramer, displays "limited" cooperativity forming dimers of tetramers. It was previously thought that high cooperativity was associated only with the (SSB)35 binding mode. However, we show here that highly cooperative binding also occurs in the (SSB)65/(SSB)56 binding modes at physiological salt concentrations containing either glutamate or acetate. Highly cooperative binding requires the 56 amino acid intrinsically disordered C-terminal linker (IDL) that connects the DNA binding domain with the 9 amino acid C-terminal acidic tip that is involved in SSB binding to other proteins involved in genome maintenance. These results suggest that high cooperativity involves interactions between IDL regions from different SSB tetramers. Glutamate, which is preferentially excluded from protein surfaces, may generally promote interactions between intrinsically disordered regions of proteins. Since glutamate is the major monovalent anion in E. coli, these results suggest that SSB likely binds to ssDNA with high cooperativity in vivo.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Ácido Glutâmico/metabolismo , Multimerização Proteica , Modelos Biológicos , Modelos Químicos , Ligação Proteica
5.
J Mol Biol ; 428(15): 2997-3012, 2016 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-27422010

RESUMO

Escherichia coli RecBCD is a DNA helicase/nuclease that functions in double-stranded DNA break repair. RecBCD possesses two motors (RecB, a 3' to 5' translocase, and RecD, a 5' to 3' translocase). Current DNA unwinding models propose that motor translocation is tightly coupled to base pair melting. However, some biochemical evidence suggests that DNA melting of multiple base pairs may occur separately from single-stranded DNA translocation. To test this hypothesis, we designed DNA substrates containing reverse backbone polarity linkages that prevent ssDNA translocation of the canonical RecB and RecD motors. Surprisingly, we find that RecBCD can processively unwind DNA for at least 80bp beyond the reverse polarity linkages. This ability requires an ATPase active RecB motor, the RecB "arm" domain, and also the RecB nuclease domain, but not its nuclease activity. These results indicate that RecBCD can unwind duplex DNA processively in the absence of ssDNA translocation by the canonical motors and that the nuclease domain regulates the helicase activity of RecBCD.


Assuntos
DNA Helicases/metabolismo , DNA Bacteriano/genética , Proteínas de Escherichia coli/metabolismo , Desnaturação de Ácido Nucleico/genética , Translocação Genética/genética , Adenosina Trifosfatases/metabolismo , Pareamento de Bases/genética , DNA de Cadeia Simples/genética , Escherichia coli/genética , Escherichia coli/metabolismo
6.
Nano Lett ; 16(6): 3892-7, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27167603

RESUMO

Notch signaling, involved in development and tissue homeostasis, is activated at the cell-cell interface through ligand-receptor interactions. Previous studies have implicated mechanical forces in the activation of Notch receptor upon binding to its ligand. Here we aimed to determine the single molecular force required for Notch activation by developing a novel low tension gauge tether (LTGT). LTGT utilizes the low unbinding force between single-stranded DNA (ssDNA) and Escherichia coli ssDNA binding protein (SSB) (∼4 pN dissociation force at 500 nm/s pulling rate). The ssDNA wraps around SSB and, upon application of force, unspools from SSB, much like the unspooling of a yoyo. One end of this nano yoyo is attached to the surface though SSB, while the other end presents a ligand. A Notch receptor, upon binding to its ligand, is believed to undergo force-induced conformational changes required for activating downstream signaling. If the required force for such activation is larger than 4 pN, ssDNA will unspool from SSB, and downstream signaling will not be activated. Using these LTGTs, in combination with the previously reported TGTs that rupture double-stranded DNA at defined forces, we demonstrate that Notch activation requires forces between 4 and 12 pN, assuming an in vivo loading rate of 60 pN/s. Taken together, our study provides a direct link between single-molecular forces and Notch activation.


Assuntos
Nanoestruturas/química , Receptor Notch1/metabolismo , Animais , Fenômenos Biomecânicos , Células CHO , Cricetulus , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Imagem Óptica , Pinças Ópticas , Imagem Individual de Molécula
7.
Nucleic Acids Res ; 44(9): 4317-29, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27084941

RESUMO

Escherichia coli single-stranded DNA binding protein (SSB) is an essential homotetramer that binds ssDNA and recruits multiple proteins to their sites of action during genomic maintenance. Each SSB subunit contains an N-terminal globular oligonucleotide/oligosaccharide binding fold (OB-fold) and an intrinsically disordered C-terminal domain. SSB binds ssDNA in multiple modes in vitro, including the fully wrapped (SSB)65 and (SSB)56 modes, in which ssDNA contacts all four OB-folds, and the highly cooperative (SSB)35 mode, in which ssDNA contacts an average of only two OB-folds. These modes can both be populated under physiological conditions. While these different modes might be used for different functions, this has been difficult to assess. Here we used a dimeric SSB construct with two covalently linked OB-folds to disable ssDNA binding in two of the four OB-folds thus preventing formation of fully wrapped DNA complexes in vitro, although they retain a wild-type-like, salt-dependent shift in cooperative binding to ssDNA. These variants complement wild-type SSB in vivo indicating that a fully wrapped mode is not essential for function. These results do not preclude a normal function for a fully wrapped mode, but do indicate that E. coli tolerates some flexibility with regards to its SSB binding modes.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/fisiologia , Sítios de Ligação , Dano ao DNA , DNA Bacteriano/química , DNA Bacteriano/genética , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Viabilidade Microbiana , Ligação Proteica
8.
J Mol Biol ; 427(4): 763-774, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25562210

RESUMO

The homotetrameric Escherichia coli single-stranded DNA binding protein (SSB) plays a central role in DNA replication, repair and recombination. E. coli SSB can bind to long single-stranded DNA (ssDNA) in multiple binding modes using all four subunits [(SSB)65 mode] or only two subunits [(SSB)35 binding mode], with the binding mode preference regulated by salt concentration and SSB binding density. These binding modes display very different ssDNA binding properties with the (SSB)35 mode displaying highly cooperative binding to ssDNA. SSB tetramers also bind an array of partner proteins, recruiting them to their sites of action. This is achieved through interactions with the last 9 amino acids (acidic tip) of the intrinsically disordered linkers (IDLs) within the four C-terminal tails connected to the ssDNA binding domains. Here, we show that the amino acid composition and length of the IDL affects the ssDNA binding mode preferences of SSB protein. Surprisingly, the number of IDLs and the lengths of individual IDLs together with the acidic tip contribute to highly cooperative binding in the (SSB)35 binding mode. Hydrodynamic studies and atomistic simulations suggest that the E. coli SSB IDLs show a preference for forming an ensemble of globular conformations, whereas the IDL from Plasmodium falciparum SSB forms an ensemble of more extended random coils. The more globular conformations correlate with cooperative binding.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Plasmodium falciparum/metabolismo , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Plasmodium falciparum/genética , Ligação Proteica/fisiologia , Conformação Proteica , Deleção de Sequência/genética
9.
J Mol Biol ; 425(23): 4802-19, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24021816

RESUMO

Escherichia coli single-stranded DNA binding protein (SSB) plays essential roles in DNA replication, recombination and repair. SSB functions as a homotetramer with each subunit possessing a DNA binding domain (OB-fold) and an intrinsically disordered C-terminus, of which the last nine amino acids provide the site for interaction with at least a dozen other proteins that function in DNA metabolism. To examine how many C-termini are needed for SSB function, we engineered covalently linked forms of SSB that possess only one or two C-termini within a four-OB-fold "tetramer". Whereas E. coli expressing SSB with only two tails can survive, expression of a single-tailed SSB is dominant lethal. E. coli expressing only the two-tailed SSB recovers faster from exposure to DNA damaging agents but accumulates more mutations. A single-tailed SSB shows defects in coupled leading and lagging strand DNA replication and does not support replication restart in vitro. These deficiencies in vitro provide a plausible explanation for the lethality observed in vivo. These results indicate that a single SSB tetramer must interact simultaneously with multiple protein partners during some essential roles in genome maintenance.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Análise Mutacional de DNA , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Viabilidade Microbiana , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
NMR Biomed ; 26(2): 193-203, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22806985

RESUMO

MRSI of prostate cancer provides a potential clinical tool to aid in the detection and characterisation of this disease, but its clinical use is limited by the need for the specialist training of radiologists to read these datasets. An essential part of this reading is the assessment of the usability and reliability of MRSI spectra because they can be affected by artefacts such as poor signal to noise, lipid signal contamination and broad resonances that could cause errors of interpretation. We have developed an automated quality control algorithm that classifies every voxel of an MRSI dataset as either acceptable or unacceptable for further analysis, based on the spectral profile alone. The method was trained and tested based on a gold standard of agreement of four experts. It was highly accurate: testing with a novel set of data from MRSI patients produced agreement with the experts' consensus decisions with a specificity of 0.95 and sensitivity of 0.95. This method provides fast quality control of three-dimensional MRSI datasets of the prostate, removing the need for radiologists to perform this time consuming, but necessary, task prior to further analysis.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/normas , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Reconhecimento Automatizado de Padrão/métodos , Reconhecimento Automatizado de Padrão/normas , Europa (Continente) , Prótons , Controle de Qualidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Biol Chem ; 288(2): 1055-64, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23192341

RESUMO

Repair of double-stranded DNA breaks in Escherichia coli is initiated by the RecBCD helicase that possesses two superfamily-1 motors, RecB (3' to 5' translocase) and RecD (5' to 3' translocase), that operate on the complementary DNA strands to unwind duplex DNA. However, it is not known whether the RecB and RecD motors act independently or are functionally coupled. Here we show by directly monitoring ATP-driven single-stranded DNA translocation of RecBCD that the 5' to 3' rate is always faster than the 3' to 5' rate on DNA without a crossover hotspot instigator site and that the translocation rates are coupled asymmetrically. That is, RecB regulates both 3' to 5' and 5' to 3' translocation, whereas RecD only regulates 5' to 3' translocation. We show that the recently identified RecBC secondary translocase activity functions within RecBCD and that this contributes to the coupling. This coupling has implications for how RecBCD activity is regulated after it recognizes a crossover hotspot instigator sequence during DNA unwinding.


Assuntos
DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Exodesoxirribonuclease V/metabolismo , Transporte Biológico , Dano ao DNA , Reparo do DNA , Espectrometria de Fluorescência
12.
J Mol Biol ; 420(4-5): 269-83, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22543099

RESUMO

Single-stranded DNA binding (SSB) proteins play central roles in genome maintenance in all organisms. Plasmodium falciparum, the causative agent of malaria, encodes an SSB protein that localizes to the apicoplast and likely functions in the replication and maintenance of its genome. P. falciparum SSB (Pf-SSB) shares a high degree of sequence homology with bacterial SSB proteins but differs in the composition of its C-terminus, which interacts with more than a dozen other proteins in Escherichia coli SSB (Ec-SSB). Using sedimentation methods, we show that Pf-SSB forms a stable homo-tetramer alone and when bound to single-stranded DNA (ssDNA). We also present a crystal structure at 2.1 Å resolution of the Pf-SSB tetramer bound to two (dT)(35) molecules. The Pf-SSB tetramer is structurally similar to the Ec-SSB tetramer, and ssDNA wraps completely around the tetramer with a "baseball seam" topology that is similar to Ec-SSB in its "65 binding mode". However, the polarity of the ssDNA wrapping around Pf-SSB is opposite to that observed for Ec-SSB. The interactions between the bases in the DNA and the amino acid side chains also differ from those observed in the Ec-SSB-DNA structure, suggesting that other differences may exist in the DNA binding properties of these structurally similar proteins.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...