Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 25(4): 519-536, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37354383

RESUMO

The initiation of this study relies on a targeted genome-mining approach to highlight the presence of a putative vanadium-dependent haloperoxidase-encoding gene in the deep-sea hydrothermal vent fungus Hortaea werneckii UBOCC-A-208029. To date, only three fungal vanadium-dependent haloperoxidases have been described, one from the terrestrial species Curvularia inaequalis, one from the fungal plant pathogen Botrytis cinerea, and one from a marine derived isolate identified as Alternaria didymospora. In this study, we describe a new vanadium chloroperoxidase from the black yeast H. werneckii, successfully cloned and overexpressed in a bacterial host, which possesses higher affinity for bromide (Km = 26 µM) than chloride (Km = 237 mM). The enzyme was biochemically characterized, and we have evaluated its potential for biocatalysis by determining its stability and tolerance in organic solvents. We also describe its potential three-dimensional structure by building a model using the AlphaFold 2 artificial intelligence tool. This model shows some conservation of the 3D structure of the active site compared to the vanadium chloroperoxidase from C. inaequalis but it also highlights some differences in the active site entrance and the volume of the active site pocket, underlining its originality.


Assuntos
Ascomicetos , Cloreto Peroxidase , Exophiala , Fontes Hidrotermais , Cloreto Peroxidase/genética , Cloreto Peroxidase/química , Cloreto Peroxidase/metabolismo , Exophiala/metabolismo , Saccharomyces cerevisiae/metabolismo , Vanádio/metabolismo , Inteligência Artificial , Ascomicetos/genética
2.
Food Microbiol ; 81: 76-88, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30910090

RESUMO

Filamentous fungi are frequently involved in food spoilage and cause important food losses and substantial economic damage. Their rapid and accurate identification is a key step to better manage food safety and quality. In recent years, MALDI-TOF MS has emerged as a powerful tool to identify microorganisms and has successfully been applied to the identification of filamentous fungi especially in the clinical context. The aim of this study was to implement a spectral database representative of food spoilage molds. To this end, after application of a standardized extraction protocol, 6477 spectra were acquired from 618 fungal strains belonging to 136 species and integrated in the VITEK MS database. The performances of this database were then evaluated by cross-validation and ∼95% of correct identification to the species level was achieved, independently of the cultivation medium and incubation time. The database was also challenged with external isolates belonging to 52 species claimed in the database and 90% were correctly identified to the species level. To our best knowledge, this is the most comprehensive database of food-relevant filamentous fungi developed to date. This study demonstrates that MALDI-TOF MS could be an alternative to conventional techniques for the rapid and reliable identification of spoilage fungi in food and industrial environments.


Assuntos
Bases de Dados Factuais , Microbiologia de Alimentos/métodos , Fungos/isolamento & purificação , Técnicas de Tipagem Micológica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alimentos , Indústria Alimentícia , Microbiologia de Alimentos/normas , Inocuidade dos Alimentos , Fungos/classificação , Técnicas de Tipagem Micológica/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas
3.
Int J Food Microbiol ; 241: 151-160, 2017 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-27780083

RESUMO

Conidial germination and mycelial growth are generally studied with conidia produced under optimal conditions to increase conidial yield. Nonetheless, the physiological state of such conidia most likely differs from those involved in spoilage of naturally contaminated food. The present study aimed at investigating the impact of temperature, pH and water activity (aw) during production of conidia on the germination parameters and compatible solutes of conidia of Penicillium roqueforti and Penicillium expansum. Low temperature (5°C) and reduced aw (0.900 aw) during sporulation significantly reduced conidial germination times whereas the pH of the sporulation medium only had a slight effect at the tested values (2.5, 8.0). Conidia of P. roqueforti produced at 5°C germinated up to 45h earlier than those produced at 20°C. Conidia of P. roqueforti and P. expansum produced at 0.900 aw germinated respectively up to 8h and 3h earlier than conidia produced at 0.980 aw. Furthermore, trehalose and mannitol assessments suggested that earlier germination might be related to delayed conidial maturation even though no ultra-structural modifications were observed by transmission electron microscopy. Taken together, these results highlight the importance of considering environmental conditions during sporulation in mycological studies. The physiological state of fungal conidia should be taken into account to design challenge tests or predictive mycology studies. This knowledge may also be of interest to improve the germination capacity of fungal cultures commonly used in fermented foods.


Assuntos
Germinação/fisiologia , Micélio/crescimento & desenvolvimento , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Temperatura Baixa , Meio Ambiente , Contaminação de Alimentos/análise , Glucose/análise , Manitol/análise , Microscopia Eletrônica de Transmissão , Trealose/análise , Água
4.
Environ Sci Pollut Res Int ; 24(11): 9886-9894, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27838909

RESUMO

Ethanol production from by-products of dates in very high gravity was conducted in batch fermentation using two yeasts, Saccharomyces cerevisiae and Zygosaccharomyces rouxii, as well as a native strain: an osmophilic strain of bacteria which was isolated for the first time from the juice of dates (Phoenix dactylifera L.). The phylogenetic analysis based on the 16S ribosomal RNA and gyrB sequence and physiological analysis indicated that the strain identified belongs to the genus of Bacillus, B. amyloliquefaciens. The ethanol yields produced from the syrup of dates (175 g L-1 and 360 g L-1 of total sugar) were 40.6% and 29.5%, respectively. By comparing the ethanol production by the isolated bacteria to that obtained using Z. rouxii and S. cerevisiae, it can be concluded that B. amyloliquefaciens was suitable for ethanol production from the syrup of dates and can consume the three types of sugar (glucose, fructose, and sucrose). Using Z. rouxii, fructose was preferentially consumed, while glucose was consumed only after fructose depletion. From this, B. amyloliquefaciens was promising for the bioethanol industry. In addition, this latter showed a good tolerance for high sugar concentration (36%), allowing ethanol production in batch fermentation at pH 5.0 and 28 °C in date syrup medium. Promising ethanol yield produced to sugar consumed were observed for the two osmotolerant microorganisms, Z. rouxii and B. amyloliquefaciens, nearly 32-33%, which were further improved when they were cocultivated, leading to an ethanol to glucose yield of 42-43%.


Assuntos
Etanol , Hipergravidade , Fermentação , Phoeniceae , Filogenia , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...