Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2680: 263-275, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428384

RESUMO

Planarians have become a powerful model system for stem cell research and regeneration. While the tool kit for mechanistic investigations has been steadily expanding over the last decade, robust genetic tools for transgene expression are still lacking. We describe here methods for in vivo and in vitro mRNA transfection of the planarian species Schmidtea mediterranea. These methods utilize the commercially available TransIT-mRNA transfection reagent to efficiently deliver mRNA encoding a synthetic nanoluciferase reporter. Using a luminescent reporter overcomes the bright autofluorescent background of planarian tissues and allows quantitative measurements of protein expression levels. Collectively, our methods provide the means for heterologous reporter expression in planarian cells and the basis for future development of transgenic techniques.


Assuntos
Mediterranea , Planárias , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mediterranea/metabolismo , Luminescência , Transfecção , Planárias/genética , Planárias/metabolismo
2.
Cell Rep Methods ; 2(10): 100298, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36313809

RESUMO

Planarians have long been studied for their regenerative abilities. Moving forward, tools for ectopic expression of non-native proteins will be of substantial value. Using a luminescent reporter to overcome the strong autofluorescence of planarian tissues, we demonstrate heterologous protein expression in planarian cells and live animals. Our approach is based on the introduction of mRNA through several nanotechnological and chemical transfection methods. We improve reporter expression by altering untranslated region (UTR) sequences and codon bias, facilitating the measurement of expression kinetics in both isolated cells and whole planarians using luminescence imaging. We also examine protein expression as a function of variations in the UTRs of delivered mRNA, demonstrating a framework to investigate gene regulation at the post-transcriptional level. Together, these advances expand the toolbox for the mechanistic analysis of planarian biology and establish a foundation for the development and expansion of transgenic techniques in this unique model system.


Assuntos
Planárias , Animais , Planárias/genética , RNA Mensageiro/genética , Mediterranea/metabolismo , Modelos Biológicos , Transfecção
3.
Mol Syst Biol ; 18(9): e11186, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36164978

RESUMO

Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.


Assuntos
Peroxissomos , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Mol Biol Cell ; 30(21): 2681-2694, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483742

RESUMO

Mitochondria are unique organelles harboring two distinct membranes, the mitochondrial inner and outer membrane (MIM and MOM, respectively). Mitochondria comprise only a subset of metabolic pathways for the synthesis of membrane lipids; therefore most lipid species and their precursors have to be imported from other cellular compartments. One such import process is mediated by the ER mitochondria encounter structure (ERMES) complex. Both mitochondrial membranes surround the hydrophilic intermembrane space (IMS). Therefore, additional systems are required that shuttle lipids between the MIM and MOM. Recently, we identified the IMS protein Mcp2 as a high-copy suppressor for cells that lack a functional ERMES complex. To understand better how mitochondria facilitate transport and biogenesis of lipids, we searched for genetic interactions of this suppressor. We found that MCP2 has a negative genetic interaction with the gene TGL2 encoding a neutral lipid hydrolase. We show that this lipase is located in the intermembrane space of the mitochondrion and is imported via the Mia40 disulfide relay system. Furthermore, we show a positive genetic interaction of double deletion of MCP2 and PSD1, the gene encoding the enzyme that synthesizes the major amount of cellular phosphatidylethanolamine. Finally, we demonstrate that the nucleotide-binding motifs of the predicted atypical kinase Mcp2 are required for its proper function. Taken together, our data suggest that Mcp2 is involved in mitochondrial lipid metabolism and an increase of this involvement by overexpression suppresses loss of ERMES.


Assuntos
Retículo Endoplasmático/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Epistasia Genética , Lipase/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Fosfatidiletanolaminas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Bioessays ; 41(8): e1800252, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31297843

RESUMO

Membrane proteins perform a variety of functions, all crucially dependent on their orientation in the membrane. However, neither the exact number of transmembrane domains (TMDs) nor the topology of most proteins have been experimentally determined. Due to this, most scientists rely primarily on prediction algorithms to determine topology and TMD assignments. Since these can give contradictory results, single-algorithm-based predictions are unreliable. To map the extent of potential misanalysis, the predictions of nine algorithms on the yeast proteome are compared and it is found that they have little agreement when predicting TMD number and termini orientation. To view all predictions in parallel, a webpage called TopologYeast: http://www.weizmann.ac.il/molgen/TopologYeast was created. Each algorithm is compared with experimental data and a poor agreement is found. The analysis suggests that more systematic data on protein topology are required to increase the training sets for prediction algorithms and to have accurate knowledge of membrane protein topology.


Assuntos
Algoritmos , Proteínas de Membrana/metabolismo , Proteoma , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Biologia Computacional
6.
Nat Methods ; 16(2): 205, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30602782

RESUMO

The version of Supplementary Table 1 originally published online with this article contained incorrect localization annotations for one plate. This error has been corrected in the online Supplementary Information.

7.
Nucleic Acids Res ; 47(D1): D1245-D1249, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357397

RESUMO

The ability to measure the abundance and visualize the localization of proteins across the yeast proteome has stimulated hypotheses on gene function and fueled discoveries. While the classic C' tagged GFP yeast library has been the only resource for over a decade, the recent development of the SWAT technology has led to the creation of multiple novel yeast libraries where new-generation fluorescent reporters are fused at the N' and C' of open reading frames. Efficient access to these data requires a user interface to visualize and compare protein abundance, localization and co-localization across cells, strains, and libraries. YeastRGB (www.yeastRGB.org) was designed to address such a need, through a user-friendly interface that maximizes informative content. It employs a compact display where cells are cropped and tiled together into a 'cell-grid.' This representation enables viewing dozens of cells for a particular strain within a display unit, and up to 30 display units can be arrayed on a standard high-definition screen. Additionally, the display unit allows users to control zoom-level and overlay of images acquired using different color channels. Thus, YeastRGB makes comparing abundance and localization efficient, across thousands of cells from different strains and libraries.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Biblioteca Gênica , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Armazenamento e Recuperação da Informação/métodos , Internet , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Fases de Leitura Aberta/genética , Proteoma/genética , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Interface Usuário-Computador
8.
J Mol Biol ; 431(3): 636-641, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30550779

RESUMO

While protein tags are ubiquitously utilized in molecular biology, they harbor the potential to interfere with functional traits of their fusion counterparts. Systematic evaluation of the effect of protein tags on function would promote accurate use of tags in experimental setups. Here we examine the effect of green fluorescent protein tagging at either the N or C terminus of budding yeast proteins on subcellular localization and functionality. We use a competition-based approach to decipher the relative fitness of two strains tagged on the same protein but on opposite termini and from that infer the correct, physiological localization for each protein and the optimal position for tagging. Our study provides a first of a kind systematic assessment of the effect of tags on the functionality of proteins and provides a step toward broad investigation of protein fusion libraries.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
9.
Nat Methods ; 15(8): 617-622, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988094

RESUMO

Yeast libraries revolutionized the systematic study of cell biology. To extensively increase the number of such libraries, we used our previously devised SWAp-Tag (SWAT) approach to construct a genome-wide library of ~5,500 strains carrying the SWAT NOP1promoter-GFP module at the N terminus of proteins. In addition, we created six diverse libraries that restored the native regulation, created an overexpression library with a Cherry tag, or enabled protein complementation assays from two fragments of an enzyme or fluorophore. We developed methods utilizing these SWAT collections to systematically characterize the yeast proteome for protein abundance, localization, topology, and interactions.


Assuntos
Genoma Fúngico , Biblioteca Genômica , Proteoma/genética , Saccharomyces cerevisiae/genética , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Proteoma/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Sequências Rotuladas
10.
Traffic ; 19(5): 370-379, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29527758

RESUMO

A third of yeast genes encode for proteins that function in the endomembrane system. However, the precise localization for many of these proteins is still uncertain. Here, we visualized a collection of ~500 N-terminally, green fluorescent protein (GFP), tagged proteins of the yeast Saccharomyces cerevisiae. By co-localizing them with 7 known markers of endomembrane compartments we determined the localization for over 200 of them. Using this approach, we create a systematic database of the various secretory compartments and identify several new residents. Focusing in, we now suggest that Lam5 resides in contact sites between the endoplasmic reticulum and the late Golgi. Additionally, analysis of interactions between the COPI coat and co-localizing proteins from our screen identifies a subset of proteins that are COPI-cargo. In summary, our approach defines the protein roster within each compartment enabling characterization of the physical and functional organization of the endomembrane system and its components.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Bases de Dados de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Via Secretória , Complexo de Golgi/metabolismo , Transporte Proteico , Saccharomyces cerevisiae
11.
J Cell Biol ; 217(1): 269-282, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29187527

RESUMO

Functional heterogeneity within the lipid droplet (LD) pool of a single cell has been observed, yet the underlying mechanisms remain enigmatic. Here, we report on identification of a specialized LD subpopulation characterized by a unique proteome and a defined geographical location at the nucleus-vacuole junction contact site. In search for factors determining identity of these LDs, we screened ∼6,000 yeast mutants for loss of targeting of the subpopulation marker Pdr16 and identified Ldo45 (LD organization protein of 45 kD) as a crucial targeting determinant. Ldo45 is the product of a splicing event connecting two adjacent genes (YMR147W and YMR148W/OSW5/LDO16). We show that Ldo proteins cooperate with the LD biogenesis component seipin and establish LD identity by defining positioning and surface-protein composition. Our studies suggest a mechanism to establish functional differentiation of organelles, opening the door to better understanding of metabolic decisions in cells.


Assuntos
Gotículas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Gotículas Lipídicas/classificação , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma , Saccharomyces cerevisiae/metabolismo
12.
Cell Rep ; 19(13): 2836-2852, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28658629

RESUMO

Mitochondria perform central functions in cellular bioenergetics, metabolism, and signaling, and their dysfunction has been linked to numerous diseases. The available studies cover only part of the mitochondrial proteome, and a separation of core mitochondrial proteins from associated fractions has not been achieved. We developed an integrative experimental approach to define the proteome of yeast mitochondria. We classified > 3,300 proteins of mitochondria and mitochondria-associated fractions and defined 901 high-confidence mitochondrial proteins, expanding the set of mitochondrial proteins by 82. Our analysis includes protein abundance under fermentable and nonfermentable growth, submitochondrial localization, single-protein experiments, and subcellular classification of mitochondria-associated fractions. We identified mitochondrial interactors of respiratory chain supercomplexes, ATP synthase, AAA proteases, the mitochondrial contact site and cristae organizing system (MICOS), and the coenzyme Q biosynthesis cluster, as well as mitochondrial proteins with dual cellular localization. The integrative proteome provides a high-confidence source for the characterization of physiological and pathophysiological functions of mitochondria and their integration into the cellular environment.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteômica/métodos , Humanos
13.
J Cell Sci ; 130(4): 791-804, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28049721

RESUMO

Peroxisomes are cellular organelles with vital functions in lipid, amino acid and redox metabolism. The cellular formation and dynamics of peroxisomes are governed by PEX genes; however, the regulation of peroxisome abundance is still poorly understood. Here, we use a high-content microscopy screen in Saccharomyces cerevisiae to identify new regulators of peroxisome size and abundance. Our screen led to the identification of a previously uncharacterized gene, which we term PEX35, which affects peroxisome abundance. PEX35 encodes a peroxisomal membrane protein, a remote homolog to several curvature-generating human proteins. We systematically characterized the genetic and physical interactome as well as the metabolome of mutants in PEX35, and we found that Pex35 functionally interacts with the vesicle-budding-inducer Arf1. Our results highlight the functional interaction between peroxisomes and the secretory pathway.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Epistasia Genética , Deleção de Genes , Genes Fúngicos , Microscopia , Saccharomyces cerevisiae/genética
14.
Sci Rep ; 6: 39464, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000760

RESUMO

Tail-anchored (TA) proteins are post-translationally inserted into membranes. The TRC40 pathway targets TA proteins to the endoplasmic reticulum via a receptor comprised of WRB and CAML. TRC40 pathway clients have been identified using in vitro assays, however, the relevance of the TRC40 pathway in vivo remains unknown. We followed the fate of TA proteins in two tissue-specific WRB knockout mouse models and found that their dependence on the TRC40 pathway in vitro did not predict their reaction to receptor depletion in vivo. The SNARE syntaxin 5 (Stx5) was extremely sensitive to disruption of the TRC40 pathway. Screening yeast TA proteins with mammalian homologues, we show that the particular sensitivity of Stx5 is conserved, possibly due to aggregation propensity of its cytoplasmic domain. We establish that Stx5 is an autophagy target that is inefficiently membrane-targeted by alternative pathways. Our results highlight an intimate relationship between the TRC40 pathway and cellular proteostasis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Qa-SNARE/metabolismo , Alelos , Animais , Autofagia , Citoplasma/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Domínios Proteicos , Proteostase , RNA Interferente Pequeno/metabolismo
15.
J Cell Sci ; 129(21): 4067-4075, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27663510

RESUMO

To optimally perform the diversity of metabolic functions that occur within peroxisomes, cells must dynamically regulate peroxisome size, number and content in response to the cell state and the environment. Except for transcriptional regulation little is known about the mechanisms used to perform this complicated feat. Focusing on the yeast Saccharomyces cerevisiae, we used complementary high-content screens to follow changes in localization of most proteins during growth in oleate. We found extensive changes in cellular architecture and identified several proteins that colocalized with peroxisomes that had not previously been considered peroxisomal proteins. One of the newly identified peroxisomal proteins, Ymr018w, is a protein with an unknown function that is similar to the yeast and human peroxisomal targeting receptor Pex5. We demonstrate that Ymr018w is a new peroxisomal-targeting receptor that targets a subset of matrix proteins to peroxisomes. We, therefore, renamed Ymr018w, Pex9, and suggest that Pex9 is a condition-specific targeting receptor that enables the dynamic rewiring of peroxisomes in response to metabolic needs. Moreover, we suggest that Pex5-like receptors might also exist in vertebrates.


Assuntos
Ácido Oleico/farmacologia , Peroxissomos/metabolismo , Proteoma/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Proteômica , Saccharomyces cerevisiae/efeitos dos fármacos
16.
Nat Methods ; 13(4): 371-378, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26928762

RESUMO

The yeast Saccharomyces cerevisiae is ideal for systematic studies relying on collections of modified strains (libraries). Despite the significance of yeast libraries and the immense variety of available tags and regulatory elements, only a few such libraries exist, as their construction is extremely expensive and laborious. To overcome these limitations, we developed a SWAp-Tag (SWAT) method that enables one parental library to be modified easily and efficiently to give rise to an endless variety of libraries of choice. To showcase the versatility of the SWAT approach, we constructed and investigated a library of ∼1,800 strains carrying SWAT-GFP modules at the amino termini of endomembrane proteins and then used it to create two new libraries (mCherry and seamless GFP). Our work demonstrates how the SWAT method allows fast and effortless creation of yeast libraries, opening the door to new ways of systematically studying cell biology.


Assuntos
Biblioteca Gênica , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Western Blotting , Biologia Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Microscopia de Fluorescência , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...