Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(21): 14181-14189, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180004

RESUMO

Hydrothermal carbonization (HTC) is an efficient thermochemical method for the conversion of organic feedstock to carbonaceous solids. HTC of different saccharides is known to produce microspheres (MS) with mostly Gaussian size distribution, which are utilized as functional materials in various applications, both as pristine MS and as a precursor for hard carbon MS. Although the average size of the MS can be influenced by adjusting the process parameters, there is no reliable mechanism to affect their size distribution. Our results demonstrate that HTC of trehalose, in contrast to other saccharides, results in a distinctly bimodal sphere diameter distribution consisting of small spheres with diameters of (2.1 ± 0.2) µm and of large spheres with diameters of (10.4 ± 2.6) µm. Remarkably, after pyrolytic post-carbonization at 1000 °C the MS develop a multimodal pore size distribution with abundant macropores > 100 nm, mesopores > 10 nm and micropores < 2 nm, which were examined by small-angle X-ray scattering and visualized by charge-compensated helium ion microscopy. The bimodal size distribution and hierarchical porosity provide an extraordinary set of properties and potential variables for the tailored synthesis of hierarchical porous carbons, making trehalose-derived hard carbon MS a highly promising material for applications in catalysis, filtration, and energy storage devices.

2.
ACS Sens ; 8(4): 1616-1623, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37017638

RESUMO

The production of hydrogen and the utilization of biomass for sustainable concepts of energy conversion and storage require gas sensors that discriminate between hydrogen (H2) and carbon monoxide (CO). Mesoporous copper-ceria (Cu-CeO2) materials with large specific surface areas and uniform porosity are prepared by nanocasting, and their textural properties are characterized by N2 physisorption, powder XRD, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The oxidation states of copper (Cu+, Cu2+) and cerium (Ce3+, Ce4+) are investigated by XPS. The materials are used as resistive gas sensors for H2 and CO. The sensors show a stronger response to CO than to H2 and low cross-sensitivity to humidity. Copper turns out to be a necessary component; copper-free ceria materials prepared by the same method show only poor sensing performance. By measuring both gases (CO and H2) simultaneously, it is shown that this behavior can be utilized for selective sensing of CO in the presence of H2.


Assuntos
Cério , Gases , Catálise , Cério/química , Oxirredução , Hidrogênio
3.
Angew Chem Int Ed Engl ; 62(26): e202217808, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37024432

RESUMO

Self-templating is a facile strategy for synthesizing porous carbons by direct pyrolysis of organic metal salts. However, the method typically suffers from low yields (<4%) and limited specific surface areas (SSA<2000 m2 g-1 ) originating from low activity of metal cations (e.g., K+ or Na+ ) in promoting construction and activation of carbon frameworks. Here we use cesium acetate as the only precursor of oxo-carbons with large SSA of the order of 3000 m2 g-1 , pore volume approaching 2 cm3 g-1 , tunable oxygen contents, and yields of up to 15 %. We unravel the role of Cs+ as an efficient promoter of framework formation, templating and etching agent, while acetates act as carbon/oxygen sources of carbonaceous frameworks. The oxo-carbons show record-high CO2 uptake of 8.71 mmol g-1 and an ultimate specific capacitance of 313 F g-1 in the supercapacitor. This study helps to understand and rationally tailor the materials design by a still rare organic solid-state chemistry.


Assuntos
Acetatos , Metais , Porosidade , Temperatura , Carbono , Césio , Oxigênio
4.
J Biomed Mater Res B Appl Biomater ; 109(12): 2142-2153, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982864

RESUMO

Photodynamic therapy (PDT) using TiO2 nanoparticles has become an important alternative treatment for different types of cancer due to their high photocatalytic activity and high absorption of UV-A light. To potentiate this treatment, we have coated commercial glass plates with TiO2 nanoparticles prepared by the sol-gel method (TiO2 -m), which exhibit a remarkable selectivity for the irreversible trapping of cancer cells. The physicochemical properties of the deposited TiO2 -m nanoparticle coatings have been characterized by a number of complementary surface-analytical techniques and their interaction with leukemia and healthy blood cells were investigated. Scanning electron and atomic force microscopy verify the formation of a compact layer of TiO2 -m nanoparticles. The particles are predominantly in the anatase phase and have hydroxyl-terminated surfaces as revealed by Raman, X-ray photoelectron, and infrared spectroscopy, as well as X-ray diffraction. We find that lymphoblastic leukemia cells adhere to the TiO2 -m coating and undergo amoeboid-like migration, whereas lymphocytic cells show distinctly weaker interactions with the coating. This evidences the potential of this nanomaterial coating to selectively trap cancer cells and renders it a promising candidate for the development of future prototypes of PDT devices for the treatment of leukemia and other types of cancers with non-adherent cells.


Assuntos
Leucemia , Nanopartículas , Vidro , Humanos , Leucemia/tratamento farmacológico , Nanopartículas/química , Titânio/química , Titânio/farmacologia
5.
Nanomaterials (Basel) ; 10(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272599

RESUMO

This Special Issue on "Functional Nanoporous Materials" in the MDPI journal nanomaterials features seven original papers [...].

6.
Nanomaterials (Basel) ; 10(1)2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968629

RESUMO

The recently introduced perovskite solar cell (PSC) technology is a promising candidate for providing low-cost energy for future demands. However, one major concern with the technology can be traced back to morphological defects in the electron selective layer (ESL), which deteriorates the solar cell performance. Pinholes in the ESL may lead to an increased surface recombination rate for holes, if the perovskite absorber layer is in contact with the fluorine-doped tin oxide (FTO) substrate via the pinholes. In this work, we used sol-gel-derived mesoporous TiO2 thin films prepared by block co-polymer templating in combination with dip coating as a model system for investigating the effect of ESL pinholes on the photovoltaic performance of planar heterojunction PSCs. We studied TiO2 films with different porosities and film thicknesses, and observed that the induced pinholes only had a minor impact on the device performance. This suggests that having narrow pinholes with a diameter of about 10 nm in the ESL is in fact not detrimental for the device performance and can even, to some extent improve their performance. A probable reason for this is that the narrow pores in the ordered structure do not allow the perovskite crystals to form interconnected pathways to the underlying FTO substrate. However, for ultrathin (~20 nm) porous layers, an incomplete ESL surface coverage of the FTO layer will further deteriorate the device performance.

7.
Nanomaterials (Basel) ; 9(2)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759838

RESUMO

The combined benefits of moisture-stable phosphonic acids and mesoporous silica materials (SBA-15 and MCM-41) as large-surface-area solid supports offer new opportunities for several applications, such as catalysis or drug delivery. We present a comprehensive study of a straightforward synthesis method via direct immobilization of several phosphonic acids and phosphoric acid esters on various mesoporous silicas in a Dean⁻Stark apparatus with toluene as the solvent. Due to the utilization of azeotropic distillation, there was no need to dry phosphonic acids, phosphoric acid esters, solvents, or silicas prior to synthesis. In addition to modeling phosphonic acids, immobilization of the important biomolecule adenosine monophosphate (AMP) on the porous supports was also investigated. Due to the high surface area of the mesoporous silicas, a possible catalytic application based on immobilization of an organocatalyst for an asymmetric aldol reaction is discussed.

8.
Molecules ; 23(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103382

RESUMO

The dynamics of interactions to a solvent is a key factor in the proper characterization of new molecular structures. In molecular dynamics simulations, the solvent molecules are explicitly present, thereby defining a more accurate description on how the solvent molecules affect the molecular conformation. Intermolecular interactions in chemical systems, e.g., hydrogen bonds, can be considered as networks or graphs. Graph theoretical analyses can be an outstanding tool in analyzing the changes in interactions between solvent and solute. In this study, the software ChemNetworks is applied to interaction studies between TIP4P solvent molecules and organic solutes, i.e., wood-derived lignan-based ligands called LIGNOLs, thereby supporting the research of interaction networks between organic molecules and solvents. This new approach is established by careful comparisons to studies using previously available tools. In the hydration studies, tetramethyl 1,4-diol is found to be the LIGNOL which was most likely to form hydrogen bonds to the TIP4P solvent.


Assuntos
Lignanas/química , Conformação Molecular , Simulação de Dinâmica Molecular , Madeira/química , Ligação de Hidrogênio , Estrutura Molecular , Soluções , Solventes/química
9.
J Pharm Sci ; 107(5): 1392-1397, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29289673

RESUMO

The interaction between disulfiram (Antabus®) and silica was studied experimentally by adsorption from apolar solvent onto highly porous silica material (Santa Barbara amorphous material-3) with large surface area. The adsorption isotherm was fitted to the Langmuir model by accounting 2 different affinities contributing to the overall behavior, which were attributed to 2 different types of silanol groups (i.e., geminal and vicinal) present on amorphous silica surfaces. This assumption was supported by theoretical calculations. In addition, the model could describe the adsorption of ibuprofen to the carrier material, indicating that the model bears big potential for describing the interactions between silica surfaces and drug molecules.


Assuntos
Inibidores de Acetaldeído Desidrogenases/química , Dissulfiram/química , Dióxido de Silício/química , Adsorção , Anti-Inflamatórios não Esteroides/química , Ibuprofeno/química , Modelos Químicos , Modelos Moleculares , Porosidade , Silanos/análise , Solventes/química , Propriedades de Superfície , Termodinâmica
10.
Gels ; 4(4)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30674859

RESUMO

Organic polymer-hydrogels are known to be capable of directing the nucleation and growth of inorganic materials, such as silica, metal oxides, apatite or metal chalcogenides. This approach can be exploited in the synthesis of materials that exhibit defined nanoporosity. When the organic polymer-based hydrogel is incorporated in the inorganic product, a composite is formed from which the organic component may be selectively removed, yielding nanopores in the inorganic product. Such porogenic impact resembles the concept of using soft or hard templates for porous materials. This micro-review provides a survey of select examples from the literature.

11.
ACS Appl Mater Interfaces ; 9(21): 17906-17913, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28488846

RESUMO

Uniform and pinhole-free electron-selective TiO2 layers are of utmost importance for efficient perovskite solar cells. Here we used a scalable and low-cost dip-coating method to prepare uniform and ultrathin (5-50 nm) compact TiO2 films on fluorine-doped tin oxide (FTO) glass substrates. The thickness of the film was tuned by changing the TiCl4 precursor concentration. The formed TiO2 follows the texture of the underlying FTO substrates, but at higher TiCl4 concentrations, the surface roughness is substantially decreased. This change occurs at a film thickness close to 20-30 nm. A similar TiCl4 concentration is needed to produce crystalline TiO2 films. Furthermore, below this film thickness, the underlying FTO might be exposed resulting in pinholes in the compact TiO2 layer. When integrated into mesoscopic perovskite solar cells there appears to be a similar critical compact TiO2 layer thickness above which the devices perform more optimally. The power conversion efficiency was improved by more than 50% (from 5.5% to ∼8.6%) when inserting a compact TiO2 layer. Devices without or with very thin compact TiO2 layers display J-V curves with an "s-shaped" feature in the negative voltage range, which could be attributed to immobilized negative ions at the electron-extracting interface. A strong correlation between the magnitude of the s-shaped feature and the exposed FTO seen in the X-ray photoelectron spectroscopy measurements indicates that the s-shape is related to pinholes in the compact TiO2 layer when it is too thin.

12.
Phys Chem Chem Phys ; 19(16): 10326-10332, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28332664

RESUMO

The performance of many chemical gas-phase reactions is strongly influenced by the interaction of reactants with interfaces. Nanoporous materials, which exhibit pore diameters up to 100 nm and high specific surface areas, can be utilized to reduce the amount of cost-intensive materials (e.g. noble metals). However, due to limitations in material transport and reaction kinetics detailed knowledge of the diffusion and the kinetics of a chemical reaction is necessary to improve the performance of chemical processes in industry and research. To experimentally study the diffusion and reaction kinetics of gaseous species inside such pores, the chemoresistive behavior of certain metal oxides such as In2O3 can be utilized. In this work, we present a model system based on hierarchically porous monolithic indium oxide (In2O3) which allows the determination of kinetic effects by utilizing its gas transducing properties. The experimental data obtained by electrical measurements are compared to two diffusion and diffusion-reaction models. Using these methods, the rate constant of ozone decomposition in porous In2O3 is estimated. The results are the basis for a suitable material design for semiconducting gas sensors, on the nano-, meso- and macroscale, which helps in understanding the underlying mechanisms of diffusion and reaction.

13.
Nanomaterials (Basel) ; 5(3): 1431-1441, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28347073

RESUMO

A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the thermally induced processes by thermogravimetric analysis (TGA), coupled with mass ion detection (MS). The highly dispersed metal nitrates in the pores of the carbon matrix tend to react to the respective metal oxides at lower temperature than reported in the literature for pure, i.e., carbon-free, metal nitrates. The subsequent thermal combustion of the CMK-3 carbon matrix also occurs at lower temperature, which is explained by a catalytic effect of the metal oxides present in the pores. This catalytic effect is particularly strong for oxides of redox active metals, such as transition group VII and VIII metals (Mn, Fe, Co, Ni), Cu, and Ce.

14.
Chem Soc Rev ; 42(9): 4036-53, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23232579

RESUMO

Ordered mesoporous materials have great potential in the field of gas sensing. Today various template-assisted synthesis methods facilitate the preparation of silica (SiO2) as well as numerous metal oxides with well-defined, uniform and regular pore systems. The unique nanostructural properties of such materials are particularly useful for their application as active layers in gas sensors based on various operating principles, such as capacitive, resistive, or optical sensing. This review summarizes the basic aspects of materials synthesis, discusses some structural properties relevant in gas sensing, and gives an overview of the literature on ordered mesoporous gas sensors.


Assuntos
Gases/análise , Dióxido de Silício/química , Tamanho da Partícula , Porosidade , Dióxido de Silício/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...