Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
bioRxiv ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39149226

RESUMO

Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability. However, how best to quantify genome-wide noise, remains unclear. Here we utilize a small-molecule perturbation (IdU) to amplify noise and assess noise quantification from numerous scRNA-seq algorithms on human and mouse datasets, and then compare to noise quantification from single-molecule RNA FISH (smFISH) for a panel of representative genes. We find that various scRNA-seq analyses report amplified noise, without altered mean-expression levels, for ~90% of genes and that smFISH analysis verifies noise amplification for the vast majority of genes tested. Collectively, the analyses suggest that most scRNA-seq algorithms are appropriate for quantifying noise including a simple normalization approach, although all of these systematically underestimate noise compared to smFISH. From a practical standpoint, this analysis argues that IdU is a globally penetrant noise-enhancer molecule-amplifying noise without altering mean-expression levels-which could enable investigations of the physiological impacts of transcriptional noise.

2.
Science ; 385(6709): eadn5866, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39116226

RESUMO

Antiviral therapies with reduced frequencies of administration and high barriers to resistance remain a major goal. For HIV, theories have proposed that viral-deletion variants, which conditionally replicate with a basic reproductive ratio [R0] > 1 (termed "therapeutic interfering particles" or "TIPs"), could parasitize wild-type virus to constitute single-administration, escape-resistant antiviral therapies. We report the engineering of a TIP that, in rhesus macaques, reduces viremia of a highly pathogenic model of HIV by >3log10 following a single intravenous injection. Animal lifespan was significantly extended, TIPs conditionally replicated and were continually detected for >6 months, and sequencing data showed no evidence of viral escape. A single TIP injection also suppressed virus replication in humanized mice and cells from persons living with HIV. These data provide proof of concept for a potential new class of single-administration antiviral therapies.


Assuntos
Partículas Artificiais Semelhantes a Vírus , Deleção de Genes , Infecções por HIV , HIV-1 , Interferência Viral , Replicação Viral , Animais , Humanos , Camundongos , Número Básico de Reprodução , Modelos Animais de Doenças , Engenharia Genética , Infecções por HIV/terapia , Infecções por HIV/virologia , HIV-1/genética , HIV-1/fisiologia , Macaca mulatta , Estudo de Prova de Conceito , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Viremia/terapia , Viremia/virologia
3.
medRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38883757

RESUMO

It has long been hypothesized that behavioral reactions to epidemic severity autoregulate infection dynamics, for example when susceptible individuals self-sequester based on perceived levels of circulating disease. However, evidence for such 'behavioral autorepression' has remained elusive, and its presence could significantly affect epidemic forecasting and interventions. Here, we analyzed early COVID-19 dynamics at 708 locations over three epidemiological scales (96 countries, 50 US states, and 562 US counties). Signatures of behavioral autorepression were identified through: (i) a counterintuitive mobility-death correlation, (ii) fluctuation-magnitude analysis, and (iii) dynamics of SARS-CoV-2 infection waves. These data enabled calculation of the average behavioral-autorepression strength (i.e., negative feedback 'gain') across different populations. Surprisingly, incorporating behavioral autorepression into conventional models was required to accurately forecast COVID-19 mortality. Models also predicted that the strength of behavioral autorepression has the potential to alter the efficacy of non-pharmaceutical interventions. Overall, these results provide evidence for the long-hypothesized existence of behavioral autorepression, which could improve epidemic forecasting and enable more effective application of non-pharmaceutical interventions during future epidemics. Significance: Challenges with epidemiological forecasting during the COVID-19 pandemic suggested gaps in underlying model architecture. One long-held hypothesis, typically omitted from conventional models due to lack of empirical evidence, is that human behaviors lead to intrinsic negative autoregulation of epidemics (termed 'behavioral autorepression'). This omission substantially alters model forecasts. Here, we provide independent lines of evidence for behavioral autorepression during the COVID-19 pandemic, demonstrate that it is sufficient to explain counterintuitive data on 'shutdowns', and provides a mechanistic explanation of why early shutdowns were more effective than delayed, high-intensity shutdowns. We empirically measure autorepression strength, and show that incorporating autorepression dramatically improves epidemiological forecasting. The autorepression phenomenon suggests that tailoring interventions to specific populations may be warranted.

4.
FEBS Lett ; 597(14): 1880-1893, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37300530

RESUMO

A conditioning lesion of the peripheral sensory axon triggers robust central axon regeneration in mammals. We trigger conditioned regeneration in the Caenorhabditis elegans ASJ neuron by laser surgery or genetic disruption of sensory pathways. Conditioning upregulates thioredoxin-1 (trx-1) expression, as indicated by trx-1 promoter-driven expression of green fluorescent protein and fluorescence in situ hybridization (FISH), suggesting trx-1 levels and associated fluorescence indicate regenerative capacity. The redox activity of trx-1 functionally enhances conditioned regeneration, but both redox-dependent and -independent activity inhibit non-conditioned regeneration. Six strains isolated in a forward genetic screen for reduced fluorescence, which suggests diminished regenerative potential, also show reduced axon outgrowth. We demonstrate an association between trx-1 expression and the conditioned state that we leverage to rapidly assess regenerative capacity.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Axônios/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Hibridização in Situ Fluorescente , Regeneração Nervosa/genética , Neurônios/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
6.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993609

RESUMO

Stochastic fluctuations (noise) in transcription generate substantial cell-to-cell variability, but the physiological roles of noise have remained difficult to determine in the absence of generalized noise-modulation approaches. Previous single-cell RNA-sequencing (scRNA-seq) suggested that the pyrimidine-base analog (5'-iodo-2'-deoxyuridine, IdU) could generally amplify noise without substantially altering mean-expression levels but scRNA-seq technical drawbacks potentially obscured the penetrance of IdU-induced transcriptional noise amplification. Here we quantify global-vs.-partial penetrance of IdU-induced noise amplification by assessing scRNA-seq data using numerous normalization algorithms and directly quantifying noise using single-molecule RNA FISH (smFISH) for a panel of genes from across the transcriptome. Alternate scRNA-seq analyses indicate IdU-induced noise amplification for ~90% of genes, and smFISH data verified noise amplification for ~90% of tested genes. Collectively, this analysis indicates which scRNA-seq algorithms are appropriate for quantifying noise and argues that IdU is a globally penetrant noise-enhancer molecule that could enable investigations of the physiological impacts of transcriptional noise.

7.
Proc Natl Acad Sci U S A ; 119(39): e2204624119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36074824

RESUMO

The high transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a primary driver of the COVID-19 pandemic. While existing interventions prevent severe disease, they exhibit mixed efficacy in preventing transmission, presumably due to their limited antiviral effects in the respiratory mucosa, whereas interventions targeting the sites of viral replication might more effectively limit respiratory virus transmission. Recently, intranasally administered RNA-based therapeutic interfering particles (TIPs) were reported to suppress SARS-CoV-2 replication, exhibit a high barrier to resistance, and prevent serious disease in hamsters. Since TIPs intrinsically target the tissues with the highest viral replication burden (i.e., respiratory tissues for SARS-CoV-2), we tested the potential of TIP intervention to reduce SARS-CoV-2 shedding. Here, we report that a single, postexposure TIP dose lowers SARS-CoV-2 nasal shedding, and at 5 days postinfection, infectious virus shed is below detection limits in 4 out of 5 infected animals. Furthermore, TIPs reduce shedding of Delta variant or WA-1 from infected to uninfected hamsters. Cohoused "contact" animals exposed to infected, TIP-treated animals exhibited significantly lower viral loads, reduced inflammatory cytokines, no severe lung pathology, and shortened shedding duration compared to animals cohoused with untreated infected animals. TIPs may represent an effective countermeasure to limit SARS-CoV-2 transmission.


Assuntos
COVID-19 , RNA Mensageiro , RNA Interferente Pequeno , SARS-CoV-2 , Eliminação de Partículas Virais , Animais , COVID-19/terapia , COVID-19/transmissão , Cricetinae , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
8.
bioRxiv ; 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35982679

RESUMO

The high transmissibility of SARS-CoV-2 is a primary driver of the COVID-19 pandemic. While existing interventions prevent severe disease, they exhibit mixed efficacy in preventing transmission, presumably due to their limited antiviral effects in the respiratory mucosa, whereas interventions targeting the sites of viral replication might more effectively limit respiratory virus transmission. Recently, intranasally administered RNA-based therapeutic interfering particles (TIPs) were reported to suppress SARS-CoV-2 replication, exhibit a high barrier to resistance, and prevent serious disease in hamsters. Since TIPs intrinsically target the tissues with the highest viral replication burden (i.e., respiratory tissues for SARS-CoV-2), we tested the potential of TIP intervention to reduce SARS-CoV-2 shedding. Here, we report that a single, post-exposure TIP dose lowers SARS-CoV-2 nasal shedding and at 5 days post-infection infectious virus shed is below detection limits in 4 out of 5 infected animals. Furthermore, TIPs reduce shedding of Delta variant or WA-1 from infected to uninfected hamsters. Co-housed 'contact' animals exposed to infected, TIP-treated, animals exhibited significantly lower viral loads, reduced inflammatory cytokines, no severe lung pathology, and shortened shedding duration compared to animals co-housed with untreated infected animals. TIPs may represent an effective countermeasure to limit SARS-CoV-2 transmission. Significance: COVID-19 vaccines are exceptionally effective in preventing severe disease and death, but they have mixed efficacy in preventing virus transmission, consistent with established literature that parenteral vaccines for other viruses fail to prevent mucosal virus shedding or transmission. Likewise, small-molecule antivirals, while effective in reducing viral-disease pathogenesis, also appear to have inconsistent efficacy in preventing respiratory virus transmission including for SARS-CoV-2. Recently, we reported the discovery of a single-administration antiviral Therapeutic Interfering Particle (TIP) against SARS-CoV-2 that prevents severe disease in hamsters and exhibits a high genetic barrier to the evolution of resistance. Here, we report that TIP intervention also reduces SARS-CoV-2 transmission between hamsters.

9.
Cell ; 185(12): 2086-2102.e22, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35561685

RESUMO

Across biological scales, gene-regulatory networks employ autorepression (negative feedback) to maintain homeostasis and minimize failure from aberrant expression. Here, we present a proof of concept that disrupting transcriptional negative feedback dysregulates viral gene expression to therapeutically inhibit replication and confers a high evolutionary barrier to resistance. We find that nucleic-acid decoys mimicking cis-regulatory sites act as "feedback disruptors," break homeostasis, and increase viral transcription factors to cytotoxic levels (termed "open-loop lethality"). Feedback disruptors against herpesviruses reduced viral replication >2-logs without activating innate immunity, showed sub-nM IC50, synergized with standard-of-care antivirals, and inhibited virus replication in mice. In contrast to approved antivirals where resistance rapidly emerged, no feedback-disruptor escape mutants evolved in long-term cultures. For SARS-CoV-2, disruption of a putative feedback circuit also generated open-loop lethality, reducing viral titers by >1-log. These results demonstrate that generating open-loop lethality, via negative-feedback disruption, may yield a class of antimicrobials with a high genetic barrier to resistance.


Assuntos
Antivirais , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Animais , Antivirais/farmacologia , Farmacorresistência Viral , Redes Reguladoras de Genes/efeitos dos fármacos , Camundongos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral
10.
Nature ; 602(7895): 129-134, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082446

RESUMO

Differentiation proceeds along a continuum of increasingly fate-restricted intermediates, referred to as canalization1,2. Canalization is essential for stabilizing cell fate, but the mechanisms that underlie robust canalization are unclear. Here we show that the BRG1/BRM-associated factor (BAF) chromatin-remodelling complex ATPase gene Brm safeguards cell identity during directed cardiogenesis of mouse embryonic stem cells. Despite the establishment of a well-differentiated precardiac mesoderm, Brm-/- cells predominantly became neural precursors, violating germ layer assignment. Trajectory inference showed a sudden acquisition of a non-mesodermal identity in Brm-/- cells. Mechanistically, the loss of Brm prevented de novo accessibility of primed cardiac enhancers while increasing the expression of neurogenic factor POU3F1, preventing the binding of the neural suppressor REST and shifting the composition of BRG1 complexes. The identity switch caused by the Brm mutation was overcome by increasing BMP4 levels during mesoderm induction. Mathematical modelling supports these observations and demonstrates that Brm deletion affects cell fate trajectory by modifying saddle-node bifurcations2. In the mouse embryo, Brm deletion exacerbated mesoderm-deleted Brg1-mutant phenotypes, severely compromising cardiogenesis, and reveals an in vivo role for Brm. Our results show that Brm is a compensable safeguard of the fidelity of mesoderm chromatin states, and support a model in which developmental canalization is not a rigid irreversible path, but a highly plastic trajectory.


Assuntos
Diferenciação Celular , Linhagem da Célula , Mesoderma/citologia , Mesoderma/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Embrião de Mamíferos , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Miocárdio/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Fator 6 de Transcrição de Octâmero/metabolismo , Fenótipo , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
11.
Cell ; 184(25): 6022-6036.e18, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34838159

RESUMO

Viral-deletion mutants that conditionally replicate and inhibit the wild-type virus (i.e., defective interfering particles, DIPs) have long been proposed as single-administration interventions with high genetic barriers to resistance. However, theories predict that robust, therapeutic DIPs (i.e., therapeutic interfering particles, TIPs) must conditionally spread between cells with R0 >1. Here, we report engineering of TIPs that conditionally replicate with SARS-CoV-2, exhibit R0 >1, and inhibit viral replication 10- to 100-fold. Inhibition occurs via competition for viral replication machinery, and a single administration of TIP RNA inhibits SARS-CoV-2 sustainably in continuous cultures. Strikingly, TIPs maintain efficacy against neutralization-resistant variants (e.g., B.1.351). In hamsters, both prophylactic and therapeutic intranasal administration of lipid-nanoparticle TIPs durably suppressed SARS-CoV-2 by 100-fold in the lungs, reduced pro-inflammatory cytokine expression, and prevented severe pulmonary edema. These data provide proof of concept for a class of single-administration antivirals that may circumvent current requirements to continually update medical countermeasures against new variants.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus Defeituosos Interferentes/metabolismo , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , COVID-19/metabolismo , Linhagem Celular , Chlorocebus aethiops , Meios de Cultivo Condicionados/farmacologia , Vírus Defeituosos Interferentes/patogenicidade , Sistemas de Liberação de Medicamentos/métodos , Células Epiteliais , Humanos , Masculino , Mesocricetus , Nanopartículas/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Células Vero
12.
Science ; 373(6557)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34301855

RESUMO

Stochastic fluctuations in gene expression ("noise") are often considered detrimental, but fluctuations can also be exploited for benefit (e.g., dither). We show here that DNA base excision repair amplifies transcriptional noise to facilitate cellular reprogramming. Specifically, the DNA repair protein Apex1, which recognizes both naturally occurring and unnatural base modifications, amplifies expression noise while homeostatically maintaining mean expression levels. This amplified expression noise originates from shorter-duration, higher-intensity transcriptional bursts generated by Apex1-mediated DNA supercoiling. The remodeling of DNA topology first impedes and then accelerates transcription to maintain mean levels. This mechanism, which we refer to as "discordant transcription through repair" ("DiThR," which is pronounced "dither"), potentiates cellular reprogramming and differentiation. Our study reveals a potential functional role for transcriptional fluctuations mediated by DNA base modifications in embryonic development and disease.


Assuntos
Diferenciação Celular , Reprogramação Celular , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química , Expressão Gênica , Transcrição Gênica , Animais , Células Cultivadas , Simulação por Computador , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias , Expressão Gênica/efeitos dos fármacos , Idoxuridina/metabolismo , Idoxuridina/farmacologia , Camundongos , Modelos Genéticos , Proteína Homeobox Nanog/genética , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única , Processos Estocásticos , Timidina Quinase/genética , Timidina Quinase/metabolismo , Transcrição Gênica/efeitos dos fármacos
13.
Cell Syst ; 12(3): 205-206, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33735616

RESUMO

One snapshot of the peer review process for "Quantitative measurements of early alphaviral replication dynamics in single cells reveals the basis for superinfection exclusion" (Singer et al., 2021).


Assuntos
Canto , Cinética , Replicação Viral
14.
mBio ; 12(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468683

RESUMO

It has long been known that noncoding genomic regions can be obligate cis elements acted upon in trans by gene products. In viruses, cis elements regulate gene expression, encapsidation, and other maturation processes, but mapping these elements relies on targeted iterative deletion or laborious prospecting for rare spontaneously occurring mutants. Here, we introduce a method to comprehensively map viral cis and trans elements at single-nucleotide resolution by high-throughput random deletion. Variable-size deletions are randomly generated by transposon integration, excision, and exonuclease chewback and then barcoded for tracking via sequencing (i.e., random deletion library sequencing [RanDeL-seq]). Using RanDeL-seq, we generated and screened >23,000 HIV-1 variants to generate a single-base resolution map of HIV-1's cis and trans elements. The resulting landscape recapitulated HIV-1's known cis-acting elements (i.e., long terminal repeat [LTR], Ψ, and Rev response element [RRE]) and, surprisingly, indicated that HIV-1's central DNA flap (i.e., central polypurine tract [cPPT] to central termination sequence [CTS]) is as critical as the LTR, Ψ, and RRE for long-term passage. Strikingly, RanDeL-seq identified a previously unreported ∼300-bp region downstream of RRE extending to splice acceptor 7 that is equally critical for sustained viral passage. RanDeL-seq was also used to construct and screen a library of >90,000 variants of Zika virus (ZIKV). Unexpectedly, RanDeL-seq indicated that ZIKV's cis-acting regions are larger than the untranscribed (UTR) termini, encompassing a large fraction of the nonstructural genes. Collectively, RanDeL-seq provides a versatile framework for generating viral deletion mutants, enabling discovery of replication mechanisms and development of novel antiviral therapeutics, particularly for emerging viral infections.IMPORTANCE Recent studies have renewed interest in developing novel antiviral therapeutics and vaccines based on defective interfering particles (DIPs)-a subset of viral deletion mutants that conditionally replicate. Identifying and engineering DIPs require that viral cis- and trans-acting elements be accurately mapped. Here, we introduce a high-throughput method (random deletion library sequencing [RanDeL-seq]) to comprehensively map cis- and trans-acting elements within a viral genome. RanDeL-seq identified essential cis elements in HIV, including the obligate nature of the once-controversial viral central polypurine tract (cPPT), and identified a new cis region proximal to the Rev responsive element (RRE). RanDeL-seq also identified regions of Zika virus required for replication and packaging. RanDeL-seq is a versatile and comprehensive technique to rapidly map cis and trans regions of a genome.


Assuntos
Mapeamento Cromossômico/métodos , Regulação Viral da Expressão Gênica , Genes Virais , Genoma Viral , HIV-1/genética , Zika virus/genética , Sequência de Bases , Biblioteca Gênica , Células HEK293 , HIV-1/metabolismo , Humanos , Deleção de Sequência , Replicação Viral , Zika virus/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-32670890

RESUMO

Herpes simplex virus-1 (HSV-1) is a significant human pathogen. Upon infection, HSV-1 expresses its immediate early (IE) genes, and the IE transcription factor ICP4 (infectious cell protein-4) plays a pivotal role in initiating the downstream gene-expression cascade. Using live-cell time-lapse fluorescence microscopy, flow cytometry, qPCR, and chromatin immunoprecipitation, we quantitatively monitored the expression of ICP4 in individual cells after infection. We find that extrinsic stimuli can accelerate ICP4 kinetics without increasing ICP4 protein or mRNA levels. The accelerated ICP4 kinetics-despite unchanged steady-state ICP4 protein or mRNA level-correlate with increased HSV-1 replicative fitness. Hence, the kinetics of ICP4 functionally mirror the kinetics of the human herpesvirus cytomegalovirus IE2 "accelerator" circuit, indicating that IE accelerator circuitry is shared among the alpha and beta herpesviruses. We speculate that this circuit motif is a common evolutionary countermeasure to throttle IE expression and thereby minimize the inherent cytotoxicity of these obligate viral transactivators.


Assuntos
Herpesvirus Humano 1 , Proteínas Imediatamente Precoces , Animais , Chlorocebus aethiops , Proteínas Imediatamente Precoces/genética , Transativadores , Fatores de Transcrição/genética , Células Vero
16.
Proc Natl Acad Sci U S A ; 117(29): 17240-17248, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632017

RESUMO

Probabilistic bet hedging, a strategy to maximize fitness in unpredictable environments by matching phenotypic variability to environmental variability, is theorized to account for the evolution of various fate-specification decisions, including viral latency. However, the molecular mechanisms underlying bet hedging remain unclear. Here, we report that large variability in protein abundance within individual herpesvirus virion particles enables probabilistic bet hedging between viral replication and latency. Superresolution imaging of individual virions of the human herpesvirus cytomegalovirus (CMV) showed that virion-to-virion levels of pp71 tegument protein-the major viral transactivator protein-exhibit extreme variability. This super-Poissonian tegument variability promoted alternate replicative strategies: high virion pp71 levels enhance viral replicative fitness but, strikingly, impede silencing, whereas low virion pp71 levels reduce fitness but promote silencing. Overall, the results indicate that stochastic tegument packaging provides a mechanism enabling probabilistic bet hedging between viral replication and latency.


Assuntos
Citomegalovirus/genética , Citomegalovirus/fisiologia , Proteínas Virais/metabolismo , Latência Viral/genética , Latência Viral/fisiologia , Evolução Biológica , Infecções por Citomegalovirus , Regulação Viral da Expressão Gênica , Humanos , Monócitos , Vírion/metabolismo , Replicação Viral
17.
Proc Natl Acad Sci U S A ; 117(19): 10350-10356, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32358201

RESUMO

Nongenetic cellular heterogeneity is associated with aging and disease. However, the origins of cell-to-cell variability are complex and the individual contributions of different factors to total phenotypic variance are still unclear. Here, we took advantage of clear phenotypic heterogeneity of circadian oscillations in clonal cell populations to investigate the underlying mechanisms of cell-to-cell variability. Using a fully automated tracking and analysis pipeline, we examined circadian period length in thousands of single cells and hundreds of clonal cell lines and found that longer circadian period is associated with increased intercellular heterogeneity. Based on our experimental results, we then estimated the contributions of heritable and nonheritable factors to this variation in circadian period length using a variance partitioning model. We found that nonheritable noise predominantly drives intercellular circadian period variation in clonal cell lines, thereby revealing a previously unrecognized link between circadian oscillations and intercellular heterogeneity. Moreover, administration of a noise-enhancing drug reversibly increased both period length and variance. These findings suggest that circadian period may be used as an indicator of cellular noise and drug screening for noise control.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Modelos Biológicos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Circadianas Period/metabolismo , Análise de Célula Única/métodos , Animais , Células Cultivadas , Medições Luminescentes , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas Circadianas Period/genética , Processos Estocásticos
18.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31668804

RESUMO

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Infecções por HIV/terapia , Imunoterapia Adotiva , Replicação Viral/genética , Animais , Anticorpos Anti-Idiotípicos/imunologia , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Camundongos , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Cultura Primária de Células , Baço/imunologia , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Latência Viral/imunologia , Replicação Viral/imunologia
19.
Bioessays ; 41(7): e1900044, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31222776

RESUMO

Recent evidence indicates that transcriptional bursts are intrinsically amplified by messenger RNA cytoplasmic processing to generate large stochastic fluctuations in protein levels. These fluctuations can be exploited by cells to enable probabilistic bet-hedging decisions. But large fluctuations in gene expression can also destabilize cell-fate commitment. Thus, it is unclear if cells temporally switch from high to low noise, and what mechanisms enable this switch. Here, the discovery of a post-transcriptional mechanism that attenuates noise in HIV is reviewed. Early in its life cycle, HIV amplifies transcriptional fluctuations to probabilistically select alternate fates, whereas at late times, HIV utilizes a post-transcriptional feedback mechanism to commit to a specific fate. Reanalyzing various reported post-transcriptional negative feedback architectures reveals that they attenuate noise more efficiently than classic transcriptional autorepression, leading to the derivation of an assay to detect post-transcriptional motifs. It is hypothesized that coupling transcriptional and post-transcriptional autoregulation enables efficient temporal noise control to benefit developmental bet-hedging decisions.


Assuntos
Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/genética , Transcrição Gênica/genética , HIV-1/genética , HIV-1/metabolismo , Humanos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética
20.
Cell Host Microbe ; 26(6): 703-705, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31951580

RESUMO

Proviral latency is a major barrier to a cure for HIV. In this issue of Cell Host & Microbe, Hataye et al. (2019) show that reactivation of HIV latency is a non-deterministic, highly stochastic (i.e., noisy) process and propose that stochastic transitions to exponential viral expansion require a critical threshold of virus.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA