Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 883, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287055

RESUMO

Realizing genetic circuits on single DNA molecules as self-encoded dissipative nanodevices is a major step toward miniaturization of autonomous biological systems. A circuit operating on a single DNA implies that genetically encoded proteins localize during coupled transcription-translation to DNA, but a single-molecule measurement demonstrating this has remained a challenge. Here, we use a genetically encoded fluorescent reporter system with improved temporal resolution and observe the synthesis of individual proteins tethered to a DNA molecule by transient complexes of RNA polymerase, messenger RNA, and ribosome. Against expectations in dilute cell-free conditions where equilibrium considerations favor dispersion, these nascent proteins linger long enough to regulate cascaded reactions on the same DNA. We rationally design a pulsatile genetic circuit by encoding an activator and repressor in feedback on the same DNA molecule. Driven by the local synthesis of only several proteins per hour and gene, the circuit dynamics exhibit enhanced variability between individual DNA molecules, and fluctuations with a broad power spectrum. Our results demonstrate that co-expressional localization, as a nonequilibrium process, facilitates single-DNA genetic circuits as dissipative nanodevices, with implications for nanobiotechnology applications and artificial cell design.


Assuntos
Células Artificiais , DNA , DNA/genética , Redes Reguladoras de Genes , Nanotecnologia , RNA Mensageiro/metabolismo
2.
Chembiochem ; 24(20): e202300400, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37518671

RESUMO

5-Methylcytosine and 5-hydroxymethylcytosine are epigenetic modifications involved in gene regulation and cancer. We present a new, simple, and high-throughput platform for multi-color epigenetic analysis. The novelty of our approach is the ability to multiplex methylation and de-methylation signals in the same assay. We utilize an engineered methyltransferase enzyme that recognizes and labels all unmodified CpG sites with a fluorescent cofactor. In combination with the already established labeling of the de-methylation mark 5-hydroxymethylcytosine via enzymatic glycosylation, we obtained a robust platform for simultaneous epigenetic analysis of these marks. We assessed the global epigenetic levels in multiple samples of colorectal cancer and observed a 3.5-fold reduction in 5hmC levels but no change in DNA methylation levels between sick and healthy individuals. We also measured epigenetic modifications in chronic lymphocytic leukemia and observed a decrease in both modification levels (5-hydroxymethylcytosine: whole blood 30 %; peripheral blood mononuclear cells (PBMCs) 40 %. 5-methylcytosine: whole blood 53 %; PBMCs 48 %). Our findings propose using a simple blood test as a viable method for analysis, simplifying sample handling in diagnostics. Importantly, our results highlight the assay's potential for epigenetic evaluation of clinical samples, benefiting research and patient management.


Assuntos
5-Metilcitosina , Leucócitos Mononucleares , Humanos , 5-Metilcitosina/análise , Fluorescência , Leucócitos Mononucleares/química , Metilação de DNA , DNA/genética , Genômica
3.
ACS Nano ; 17(10): 9178-9187, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37154345

RESUMO

Proteins and enzymes in the cell nucleus require physical access to their DNA target sites in order to perform genomic tasks such as gene activation and transcription. Hence, chromatin accessibility is a central regulator of gene expression, and its genomic profile holds essential information on the cell type and state. We utilized the E. coli Dam methyltransferase in combination with a fluorescent cofactor analogue to generate fluorescent tags in accessible DNA regions within the cell nucleus. The accessible portions of the genome are then detected by single-molecule optical genome mapping in nanochannel arrays. This method allowed us to characterize long-range structural variations and their associated chromatin structure. We show the ability to create whole-genome, allele-specific chromatin accessibility maps composed of long DNA molecules extended in silicon nanochannels.


Assuntos
Cromatina , Escherichia coli , Escherichia coli/genética , DNA/genética , Mapeamento Cromossômico/métodos
4.
J Med Chem ; 66(1): 934-950, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36581322

RESUMO

Antivirulence agents targeting endospore-transmitted Clostridioides difficile infections are urgently needed. C. difficile-specific DNA adenine methyltransferase (CamA) is required for efficient sporulation and affects persistence in the colon. The active site of CamA is conserved and closely resembles those of hundreds of related S-adenosyl-l-methionine (SAM)-dependent methyltransferases, which makes the design of selective inhibitors more challenging. We explored the solvent-exposed edge of the SAM adenosine moiety and systematically designed 42 analogs of adenosine carrying substituents at the C6-amino group (N6) of adenosine. We compare the inhibitory properties and binding affinity of these diverse compounds and present the crystal structures of CamA in complex with 14 of them in the presence of substrate DNA. The most potent of these inhibitors, compound 39 (IC50 ∼ 0.4 µM and KD ∼ 0.2 µM), is selective for CamA against closely related bacterial and mammalian DNA and RNA adenine methyltransferases, protein lysine and arginine methyltransferases, and human adenosine receptors.


Assuntos
Clostridioides difficile , Metiltransferases , Animais , Humanos , Metiltransferases/química , Adenosina/metabolismo , Adenina/farmacologia , Adenina/metabolismo , S-Adenosilmetionina/metabolismo , DNA/metabolismo , Proteína-Arginina N-Metiltransferases , Mamíferos/metabolismo
5.
Nucleic Acids Res ; 50(16): e92, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35657088

RESUMO

DNA methylation, specifically, methylation of cytosine (C) nucleotides at the 5-carbon position (5-mC), is the most studied and significant epigenetic modification. Here we developed a chemoenzymatic procedure to fluorescently label non-methylated cytosines in CpG context, allowing epigenetic profiling of single DNA molecules spanning hundreds of thousands of base pairs. We used a CpG methyltransferase with a synthetic S-adenosyl-l-methionine cofactor analog to transfer an azide to cytosines instead of the natural methyl group. A fluorophore was then clicked onto the DNA, reporting on the amount and position of non-methylated CpGs. We found that labeling efficiency was increased up to 2-fold by the addition of a nucleosidase, presumably by degrading the inactive by-product of the cofactor after labeling, preventing its inhibitory effect. We used the method to determine the decline in global DNA methylation in a chronic lymphocytic leukemia patient and then performed whole-genome methylation mapping of the model plant Arabidopsis thaliana. Our genome maps show high concordance with published bisulfite sequencing methylation maps. Although mapping resolution is limited by optical detection to 500-1000 bp, the labeled DNA molecules produced by this approach are hundreds of thousands of base pairs long, allowing access to long repetitive and structurally variable genomic regions.


Assuntos
Arabidopsis , Metilação de DNA , Arabidopsis/genética , Arabidopsis/metabolismo , Ilhas de CpG/genética , Citosina , DNA/genética , DNA/metabolismo , Epigênese Genética , Epigenômica , Humanos , Análise de Sequência de DNA/métodos , Sulfitos
6.
ACS Nano ; 15(2): 2679-2685, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33478224

RESUMO

Identifying DNA species is crucial for diagnostics. For DNA identification, single-molecule DNA sequence mapping is an alternative to DNA sequencing toward fast point-of-care testing, which traditionally relies on targeting and labeling DNA sequences with fluorescent labels and readout using optical imaging methods. A nanopore is a promising sensor as a complement to optical mapping with advantages of electric measurement suitable for portable devices and potential for high resolution. Here, we demonstrate a high-resolution nanopore-based DNA sequence mapping by labeling specific short sequence motifs with oligodeoxynucleotides (ODNs) using DNA methyltransferase (MTase) and detecting them using nanopores. We successfully detected ODNs down to the size of 11 nucleotides without introducing extra reporters and resolved neighboring sites with a distance of 141 bp (∼48 nm) on a single DNA molecule. To accurately locate the sequence motif positions on DNA, a nanopore data analysis method is proposed by considering DNA velocity change through nanopores and using ensemble statistics to translate the time-dependent signals to the location information. Our platform enables high-resolution detection of small labels on DNA and high-accuracy localization of them for DNA species identification in an all-electrical format. The method presents an alternative to optical techniques relying on fluorescent labels and is promising for miniature-scale integration for diagnostic applications.


Assuntos
Nanoporos , Sequência de Bases , DNA/genética , Nanotecnologia , Oligodesoxirribonucleotídeos , Análise de Sequência de DNA
7.
Nanoscale ; 13(4): 2465-2471, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33471009

RESUMO

The past decade has seen enormous progress in DNA nanotechnology through the advent of DNA origami. Functionalizing the DNA origami for multiple applications is the recent focus of this field. Here we have constructed a novel DNA enzyme nano-factory, which modifies target DNA embedded on a DNA origami platform. The enzyme is programmed to reside in close proximity to the target DNA which enhances significantly the local concentration compared to solution-based DNA modification. To demonstrate this we have immobilized DNA methyltransferase M·TaqI next to the target DNA on the DNA origami and used this enzyme to sequence-specifically modify the target DNA with biotin using a cofactor analogue. Streptavidin binding to biotin is applied as a topographic marker to follow the machine cycle of this enzyme nano-factory using atomic force microscopy imaging. The nano-factory is demonstrated to be recyclable and holds the potential to be expanded to a multi-enzyme, multi-substrate operating system controlled by simple to complex molecules made of DNA, RNA or proteins.


Assuntos
Nanoestruturas , DNA , Microscopia de Força Atômica , Nanotecnologia , Conformação de Ácido Nucleico
8.
Nanoscale ; 12(39): 20287-20291, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33001091

RESUMO

Non-DNA labels are key components for the construction of functional DNA nanostructures. Here, we present a method to graft covalent labels onto DNA origami nanostructures in an enzymatic one-pot reaction. The DNA methyltransferase M.TaqI labels the DNA nanostructures with azide groups, which serve as universal attachment points via click chemistry. Direct labeling with fluorescent dyes is also demonstrated. The procedure yields structures with high fluorescence intensities and narrow intensity distributions. In combination with UV crosslinking it enables the creation of temperature-stable, intense fluorescent beacons.


Assuntos
Metiltransferases , Nanoestruturas , Azidas , DNA , Corantes Fluorescentes
9.
Chembiochem ; 21(17): 2445-2448, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267052

RESUMO

G-Quadruplex (G4)-forming DNA sequences have a tendency to form stable multimeric structures. This can be problematic for studies with synthetic oligodeoxynucleotides. Herein, we describe a method that quantitatively converts multimeric intermolecular structures of the Pu27 sequence from the c-myc promoter into the desired monomeric G4 by alkaline treatment and refolding.


Assuntos
DNA/síntese química , Proteínas Proto-Oncogênicas c-myc/química , DNA/química , Quadruplex G , Humanos , Regiões Promotoras Genéticas/genética , Conformação Proteica , Proteínas Proto-Oncogênicas c-myc/genética
10.
Chembiochem ; 21(3): 392-400, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31287209

RESUMO

Biomedicinally important histone lysine methyltransferases (KMTs) catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) cosubstrate to lysine residues in histones and other proteins. Herein, experimental and computational investigations on human KMT-catalyzed ethylation of histone peptides by using S-adenosylethionine (AdoEth) and Se-adenosylselenoethionine (AdoSeEth) cosubstrates are reported. MALDI-TOF MS experiments reveal that, unlike monomethyltransferases SETD7 and SETD8, methyltransferases G9a and G9a-like protein (GLP) do have the capacity to ethylate lysine residues in histone peptides, and that cosubstrates follow the efficiency trend AdoMet>AdoSeEth>AdoEth. G9a and GLP can also catalyze AdoSeEth-mediated ethylation of ornithine and produce histone peptides bearing lysine residues with different alkyl groups, such as H3K9meet and H3K9me2et. Molecular dynamics and free energy simulations based on quantum mechanics/molecular mechanics potential supported the experimental findings by providing an insight into the geometry and energetics of the enzymatic methyl/ethyl transfer process.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Biocatálise , Teoria da Densidade Funcional , Histona-Lisina N-Metiltransferase/química , Humanos , Lisina/química , Conformação Molecular , Simulação de Dinâmica Molecular
11.
Nature ; 569(7757): 581-585, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043749

RESUMO

Methylation of cytosine to 5-methylcytosine (5mC) is a prevalent DNA modification found in many organisms. Sequential oxidation of 5mC by ten-eleven translocation (TET) dioxygenases results in a cascade of additional epigenetic marks and promotes demethylation of DNA in mammals1,2. However, the enzymatic activity and function of TET homologues in other eukaryotes remains largely unexplored. Here we show that the green alga Chlamydomonas reinhardtii contains a 5mC-modifying enzyme (CMD1) that is a TET homologue and catalyses the conjugation of a glyceryl moiety to the methyl group of 5mC through a carbon-carbon bond, resulting in two stereoisomeric nucleobase products. The catalytic activity of CMD1 requires Fe(II) and the integrity of its binding motif His-X-Asp, which is conserved in Fe-dependent dioxygenases3. However, unlike previously described TET enzymes, which use 2-oxoglutarate as a co-substrate4, CMD1 uses L-ascorbic acid (vitamin C) as an essential co-substrate. Vitamin C donates the glyceryl moiety to 5mC with concurrent formation of glyoxylic acid and CO2. The vitamin-C-derived DNA modification is present in the genome of wild-type C. reinhardtii but at a substantially lower level in a CMD1 mutant strain. The fitness of CMD1 mutant cells during exposure to high light levels is reduced. LHCSR3, a gene that is critical for the protection of C. reinhardtii from photo-oxidative damage under high light conditions, is hypermethylated and downregulated in CMD1 mutant cells compared to wild-type cells, causing a reduced capacity for photoprotective non-photochemical quenching. Our study thus identifies a eukaryotic DNA base modification that is catalysed by a divergent TET homologue and unexpectedly derived from vitamin C, and describes its role as a potential epigenetic mark that may counteract DNA methylation in the regulation of photosynthesis.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Algas/metabolismo , Ácido Ascórbico/metabolismo , Biocatálise , Chlamydomonas reinhardtii/enzimologia , DNA/química , DNA/metabolismo , 5-Metilcitosina/química , Dióxido de Carbono/metabolismo , Metilação de DNA , Glioxilatos/metabolismo , Nucleosídeos/química , Nucleosídeos/metabolismo , Fotossíntese
12.
Genome Res ; 29(4): 646-656, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846530

RESUMO

We report on the development of a methylation analysis workflow for optical detection of fluorescent methylation profiles along chromosomal DNA molecules. In combination with Bionano Genomics genome mapping technology, these profiles provide a hybrid genetic/epigenetic genome-wide map composed of DNA molecules spanning hundreds of kilobase pairs. The method provides kilobase pair-scale genomic methylation patterns comparable to whole-genome bisulfite sequencing (WGBS) along genes and regulatory elements. These long single-molecule reads allow for methylation variation calling and analysis of large structural aberrations such as pathogenic macrosatellite arrays not accessible to single-cell second-generation sequencing. The method is applied here to study facioscapulohumeral muscular dystrophy (FSHD), simultaneously recording the haplotype, copy number, and methylation status of the disease-associated, highly repetitive locus on Chromosome 4q.


Assuntos
Metilação de DNA , Análise de Sequência de DNA/métodos , Variação Genética , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Análise de Sequência de DNA/normas
13.
Sci Rep ; 8(1): 3755, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491468

RESUMO

In pretargeted radio-immunotherapy, the gradual administration of a non-radioactive tumor antigen-addressing antibody-construct and the subsequent application of a radioactive labeled, low molecular weight substance enable a highly effective and selective targeting of tumor tissue. We evaluated this concept in prostate stem cell antigen (PSCA)-positive cancers using the antigen-specific, biotinylated single chain antibody scFv(AM1)-P-BAP conjugated with tetrameric neutravidin. To visualize the systemic biodistribution, a radiolabeled biotin was injected to interact with scFv(AM1)-P-BAP/neutravidin conjugate. Biotin derivatives conjugated with different chelators for complexation of radioactive metal ions and a polyethylene glycol linker (n = 45) were successfully synthesized and evaluated in vitro and in a mouse xenograft model. In vivo, the scFv(AM1)-P-BAP showed highly PSCA-specific tumor retention with a PSCA+ tumor/PSCA- tumor accumulation ratio of ten. PEGylation of radiolabeled biotin resulted in lower liver uptake improving the tumor to background ratio.


Assuntos
Antígenos de Neoplasias/metabolismo , Imagem Molecular/métodos , Proteínas de Neoplasias/metabolismo , Anticorpos de Cadeia Única , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Proteínas Ligadas por GPI/metabolismo , Humanos , Marcação por Isótopo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Camundongos , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Cadeia Única/farmacocinética , Distribuição Tecidual
14.
Nano Lett ; 17(9): 5199-5205, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829136

RESUMO

Nanopore sensors show great potential for rapid, single-molecule determination of DNA sequence information. Here, we develop an ionic current-based method for determining the positions of short sequence motifs in double-stranded DNA molecules with solid-state nanopores. Using the DNA-methyltransferase M.TaqI and a biotinylated S-adenosyl-l-methionine cofactor analogue we create covalently attached biotin labels at 5'-TCGA-3' sequence motifs. Monovalent streptavidin is then added to bind to the biotinylated sites giving rise to additional current blockade signals when the DNA passes through a conical quartz nanopore. We determine the relationship between translocation time and position along the DNA contour and find a minimum resolvable distance between two labeled sites of ∼200 bp. We then characterize a variety of DNA molecules by determining the positions of bound streptavidin and show that two short genomes can be simultaneously detected in a mixture. Our method provides a simple, generic single-molecule detection platform enabling DNA characterization in an electrical format suited for portable devices for potential diagnostic applications.


Assuntos
Mapeamento Cromossômico/métodos , DNA/análise , Nanoporos/ultraestrutura , Nanotecnologia/métodos , Sequência de Bases , Biotinilação , DNA/genética , Transporte de Íons , Estreptavidina/química
15.
ACS Chem Biol ; 12(7): 1719-1725, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28493677

RESUMO

Transcription-activator-like effectors (TALEs) are programmable DNA binding proteins widely used for genome targeting. TALEs consist of multiple concatenated repeats, each selectively recognizing one nucleobase via a defined repeat variable diresidue (RVD). Effective use of TALEs requires knowledge about their binding ability to epigenetic and other modified nucleobases occurring in target DNA. However, aside from epigenetic cytosine-5 modifications, the binding ability of TALEs to modified DNA is unknown. We here study the binding of TALEs to the epigenetic nucleobase N6-methyladenine (6mA) found in prokaryotic and recently also eukaryotic genomes. We find that the natural, adenine (A)-binding RVD NI is insensitive to 6mA. Model-assisted structure-function studies reveal accommodation of 6mA by RVDs with altered hydrophobic surfaces and abilities of hydrogen bonding to the N6-amino group or N7 atom of A. Surprisingly, this tolerance of N6 substitution was transferrable to bulky N6-alkynyl substituents usable for click chemistry and even to a large rhodamine dye, establishing the N6 position of A as the first site of DNA that offers label introduction within TALE target sites without interference. These findings will guide future in vivo studies with TALEs and expand their applicability as DNA capture probes for analytical applications in vitro.


Assuntos
Adenina/química , Adenina/metabolismo , DNA/metabolismo , Efetores Semelhantes a Ativadores de Transcrição/química , Inativação Luminosa Assistida por Cromóforo , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Metilação
16.
Anticancer Agents Med Chem ; 17(10): 1434-1440, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28270070

RESUMO

BACKGROUND: Targeted imaging and therapy (theranostics) is a promising approach for the simultaneous improvement of cancer diagnosis, prognosis and management. Therapeutic and imaging reagents are coupled to tumor-targeting molecules such as antibodies, providing a basis for truly personalized medicine. However, the development of antibody-drug conjugates with acceptable pharmaceutical properties is a complex process and several parameters must be optimized, such as the controlled conjugation method and the drug-to-antibody ratio. OBJECTIVE: The major aim of this work is to address fundamental key challenges for the development of versatile technology platform for generating homogenous immunotheranostic reagent. METHOD: We conjugated the theranostics reagent IRDye700dx to a recombinant antibody fusion protein containing a self-labeling protein (SNAP-tag) which provides a unique reaction site. RESULTS: The resulting conjugate was suitable for the imaging of cancer cells expressing the epidermal growth factor receptor and demonstrated potent phototherapeutic and imaging activities against them. CONCLUSION: Here, we describe a simple, rapid and robust site-directed labeling method that can be used to generate homogeneous immunoconjugate with defined pharmacological properties.


Assuntos
Anticorpos/uso terapêutico , Neoplasias/tratamento farmacológico , Nanomedicina Teranóstica , Anticorpos/química , Relação Dose-Resposta a Droga , Receptores ErbB/análise , Receptores ErbB/biossíntese , Humanos , Indóis/química , Indóis/uso terapêutico , Estrutura Molecular , Compostos de Organossilício/química , Compostos de Organossilício/uso terapêutico , Fotoquimioterapia , Relação Estrutura-Atividade
17.
Adv Mater ; 29(9)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28026129

RESUMO

A stacked plasmonic nanowell-nanopore biosensor strongly suppresses the background fluorescence from the bulk and yields net more than tenfold enhancement of the fluorescence intensity. The device offers extremely high signal-to-background (S/B) ratio for single-molecule detection at ultralow excitation laser intensities, while maintaining extremely high temporal bandwidth for single-DNA sensing.


Assuntos
Nanoporos , Técnicas Biossensoriais , DNA , Luz , Nanotecnologia
18.
Nucleic Acids Res ; 44(22): 10631-10643, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27634931

RESUMO

There is a growing perception that long non-coding RNAs (lncRNAs) modulate cellular function. In this study, we analyzed the role of the lncRNA HOTAIR in mesenchymal stem cells (MSCs) with particular focus on senescence-associated changes in gene expression and DNA-methylation (DNAm). HOTAIR binding sites were enriched at genomic regions that become hypermethylated with increasing cell culture passage. Overexpression and knockdown of HOTAIR inhibited or stimulated adipogenic differentiation of MSCs, respectively. Modification of HOTAIR expression evoked only very moderate effects on gene expression, particularly of polycomb group target genes. Furthermore, overexpression and knockdown of HOTAIR resulted in DNAm changes at HOTAIR binding sites. Five potential triple helix forming domains were predicted within the HOTAIR sequence based on reverse Hoogsteen hydrogen bonds. Notably, the predicted triple helix target sites for these HOTAIR domains were also enriched in differentially expressed genes and close to DNAm changes upon modulation of HOTAIR Electrophoretic mobility shift assays provided further evidence that HOTAIR domains form RNA-DNA-DNA triplexes with predicted target sites. Our results demonstrate that HOTAIR impacts on differentiation of MSCs and that it is associated with senescence-associated DNAm. Targeting of epigenetic modifiers to relevant loci in the genome may involve triple helix formation with HOTAIR.


Assuntos
Células-Tronco Mesenquimais/fisiologia , RNA Longo não Codificante/fisiologia , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Metilação de DNA , Epigênese Genética , Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , RNA Longo não Codificante/química
19.
ACS Nano ; 10(9): 8861-70, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27580095

RESUMO

Detection of epigenetic markers, including 5-methylcytosine, is crucial due to their role in gene expression regulation and due to the mounting evidence of aberrant DNA methylation patterns in cancer biogenesis. Single-molecule methods to date have primarily been focused on hypermethylation detection; however, many oncogenes are hypomethylated during cancer development, presenting an important unmet biosensing challenge. To this end, we have developed a labeling and single-molecule quantification method for multiple unmethylated cytosine-guanine dinucleotides (CpGs). Our method involves a single-step covalent coupling of DNA with synthetic cofactor analogues using DNA methyltransferases (MTases) followed by molecule-by-molecule electro-optical nanopore detection and quantification with single or multiple colors. This sensing method yields a calibrated scale to directly quantify the number of unmethylated CpGs in the target sequences of each DNA molecule. Importantly, our method can be used to analyze ∼10 kbp long double-stranded DNA while circumventing PCR amplification or bisulfite conversion. Expanding this technique to use two colors, as demonstrated here, would enable sensing of multiple DNA MTases through orthogonal labeling/sensing of unmethylated CpGs (or other epigenetic modifications) associated with specific recognition sites. Our proof-of-principle study may permit sequence-specific, direct targeting of clinically relevant hypomethylated sites in the genome.


Assuntos
Metilação de DNA , DNA/análise , Nanoporos , Nanotecnologia , Reação em Cadeia da Polimerase
20.
ACS Nano ; 10(11): 9823-9830, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27646634

RESUMO

Optical genome mapping in nanochannels is a powerful genetic analysis method, complementary to deoxyribonucleic acid (DNA) sequencing. The method is based on detecting a pattern of fluorescent labels attached along individual DNA molecules. When such molecules are extended in nanochannels, the labels create a fluorescent genetic barcode that is used for mapping the DNA molecule to its genomic locus and identifying large-scale variation from the genome reference. Mapping resolution is currently limited by two main factors: the optical diffraction limit and the thermal fluctuations of DNA molecules suspended in the nanochannels. Here, we utilize single-molecule tracking and super-resolution localization in order to improve the mapping accuracy and resolving power of this genome mapping technique and achieve a 15-fold increase in resolving power compared to currently practiced methods. We took advantage of a naturally occurring genetic repeat array and labeled each repeat with custom-designed Trolox conjugated fluorophores for enhanced photostability. This model system allowed us to acquire extremely long image sequences of the equally spaced fluorescent markers along DNA molecules, enabling detailed characterization of nanoconfined DNA dynamics and quantitative comparison to the Odijk theory for confined polymer chains. We present a simple method to overcome the thermal fluctuations in the nanochannels and exploit single-step photobleaching to resolve subdiffraction spaced fluorescent markers along fluctuating DNA molecules with ∼100 bp resolution. In addition, we show how time-averaging over just ∼50 frames of 40 ms enhances mapping accuracy, improves mapping P-value scores by 3 orders of magnitude compared to nonaveraged alignment, and provides a significant advantage for analyzing structural variations between DNA molecules with similar sequence composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...