Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 31(6): 707-21, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25535917

RESUMO

Acquisition and maintenance of vascular smooth muscle fate are essential for the morphogenesis and function of the circulatory system. Loss of contractile properties or changes in the identity of vascular smooth muscle cells (vSMCs) can result in structural alterations associated with aneurysms and vascular wall calcification. Here we report that maturation of sclerotome-derived vSMCs depends on a transcriptional switch between mouse embryonic days 13 and 14.5. At this time, Notch/Jag1-mediated repression of sclerotome transcription factors Pax1, Scx, and Sox9 is necessary to fully enable vSMC maturation. Specifically, Notch signaling in vSMCs antagonizes sclerotome and cartilage transcription factors and promotes upregulation of contractile genes. In the absence of the Notch ligand Jag1, vSMCs acquire a chondrocytic transcriptional repertoire that can lead to ossification. Importantly, our findings suggest that sustained Notch signaling is essential throughout vSMC life to maintain contractile function, prevent vSMC reprogramming, and promote vascular wall integrity.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Condrogênese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Fatores de Transcrição SOX9/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cartilagem/metabolismo , Linhagem da Célula , Condrócitos/citologia , Feminino , Proteína Jagged-1 , Ligantes , Masculino , Camundongos , Contração Muscular , Receptores Notch/metabolismo , Análise de Sequência de RNA , Proteínas Serrate-Jagged , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/metabolismo
2.
Dev Cell ; 22(6): 1313-20, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22658935

RESUMO

Notch signaling controls diverse cellular processes critical to development and disease. Cell surface ligands bind Notch on neighboring cells but require endocytosis to activate signaling. The role ligand endocytosis plays in Notch activation has not been established. Here we integrate optical tweezers with cell biological and biochemical methods to test the prevailing model that ligand endocytosis facilitates recycling to enhance ligand interactions with Notch necessary to trigger signaling. Specifically, single-molecule measurements indicate that interference of ligand endocytosis and/or recycling does not alter the force required to rupture bonds formed between cells expressing the Notch ligand Delta-like1 (Dll1) and laser-trapped Notch1 beads. Together, our analyses eliminate roles for ligand endocytosis and recycling in Dll1-Notch1 interactions and indicate that recycling indirectly affects signaling by regulating the accumulation of cell surface ligand. Importantly, our study demonstrates the utility of optical tweezers to test a role for ligand endocytosis in generating cell-mediated mechanical force.


Assuntos
Endocitose , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pinças Ópticas , Receptor Notch1/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Linhagem Celular , Peptídeos e Proteínas de Sinalização Intercelular/química , Ligantes , Camundongos , Ligação Proteica , Receptor Notch1/química , Transdução de Sinais
3.
Dev Cell ; 22(6): 1299-312, 2012 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-22658936

RESUMO

Notch signaling induced by cell surface ligands is critical to development and maintenance of many eukaryotic organisms. Notch and its ligands are integral membrane proteins that facilitate direct cell-cell interactions to activate Notch proteolysis and release the intracellular domain that directs Notch-specific cellular responses. Genetic studies suggest that Notch ligands require endocytosis, ubiquitylation, and epsin endocytic adaptors to activate signaling, but the exact role of ligand endocytosis remains unresolved. Here we characterize a molecularly distinct mode of clathrin-mediated endocytosis requiring ligand ubiquitylation, epsins, and actin for ligand cells to activate signaling in Notch cells. Using a cell-bead optical tweezers system, we obtained evidence for cell-mediated mechanical force dependent on this distinct mode of ligand endocytosis. We propose that the mechanical pulling force produced by endocytosis of Notch-bound ligand drives conformational changes in Notch that permit activating proteolysis.


Assuntos
Actinas/fisiologia , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Dinaminas/fisiologia , Endocitose/fisiologia , Receptor Notch1/metabolismo , Animais , Linhagem Celular , Clatrina/fisiologia , Ligantes , Fenômenos Mecânicos , Camundongos , Pinças Ópticas , Ubiquitinação/fisiologia
4.
Semin Cell Dev Biol ; 23(4): 429-36, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22306180

RESUMO

Regulation of Notch signaling is critical to development and maintenance of most eukaryotic organisms. The Notch receptors and ligands are integral membrane proteins and direct cell-cell interactions are needed to activate signaling. Ligand-expressing cells activate Notch signaling through an unusual mechanism involving Notch proteolysis to release the intracellular domain from the membrane, allowing the Notch receptor to function directly as the downstream signal transducer. In the absence of ligand, the Notch receptor is maintained in an autoinhibited, protease resistant state. Genetic studies suggest that Notch ligands require ubiquitylation, epsin endocytic adaptors and dynamin-dependent endocytosis for signaling activity. Here we discuss potential models and supporting evidence to account for the absolute requirement for ligand endocytosis to activate signaling in Notch cells. Specifically, we focus on a role for ligand-mediated endocytic force to unfold Notch, override the autoinhibited state, and activate proteolysis to direct Notch-specific cellular responses.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Endocitose , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Comunicação Celular , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Ligantes , Proteínas de Membrana/fisiologia , Estrutura Terciária de Proteína , Transporte Proteico , Desdobramento de Proteína , Proteólise , Receptores Notch/química , Proteínas Serrate-Jagged
5.
Dev Cell ; 21(1): 134-44, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21763614

RESUMO

In the first volume of Developmental Cell, it was reported that the classic Drosophila neurogenic gene neuralized encodes a ubiquitin ligase that monoubiquitylates the Notch ligand Delta, thus promoting Delta endocytosis. A requirement for ligand internalization by the signal-sending cell, although counterintuitive, remains to date a feature unique to Notch signaling. Ten years and many ubiquitin ligases later, we discuss sequels to these three papers with an eye toward reviewing the development of ideas for how ligand ubiquitylation and endocytosis propel Notch signaling.


Assuntos
Receptores Notch/metabolismo , Ubiquitinação , Animais , Humanos , Ligantes , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
Development ; 137(23): 4061-72, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21062863

RESUMO

Mutations in the human Notch ligand jagged 1 (JAG1) result in a multi-system disorder called Alagille syndrome (AGS). AGS is chiefly characterized by a paucity of intrahepatic bile ducts (IHBD), but also includes cardiac, ocular, skeletal, craniofacial and renal defects. The disease penetration and severity of the affected organs can vary significantly and the molecular basis for this broad spectrum of pathology is unclear. Here, we report that Jag1 inactivation in the portal vein mesenchyme (PVM), but not in the endothelium of mice, leads to the hepatic defects associated with AGS. Loss of Jag1 expression in SM22α-positive cells of the PVM leads to defective bile duct development beyond the initial formation of the ductal plate. Cytokeratin 19-positive cells are detected surrounding the portal vein, yet they are unable to form biliary tubes, revealing an instructive role of the vasculature in liver development. These findings uncover the cellular basis for the defining feature of AGS, identify mesenchymal Jag1-dependent and -independent stages of duct development, and provide mechanistic information for the role of Jag1 in IHBD formation.


Assuntos
Síndrome de Alagille/embriologia , Síndrome de Alagille/patologia , Ductos Biliares Intra-Hepáticos/embriologia , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Veia Porta/metabolismo , Animais , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Análise Química do Sangue , Agregação Celular , Diferenciação Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Deleção de Genes , Humanos , Proteína Jagged-1 , Fígado/embriologia , Fígado/metabolismo , Fígado/patologia , Mesoderma/embriologia , Mesoderma/patologia , Camundongos , Morfogênese , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Neovascularização Fisiológica , Fenótipo , Veia Porta/embriologia , Veia Porta/patologia , Fatores de Transcrição SOX9/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais
7.
Curr Top Dev Biol ; 92: 73-129, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20816393

RESUMO

Notch signaling induced by canonical Notch ligands is critical for normal embryonic development and tissue homeostasis through the regulation of a variety of cell fate decisions and cellular processes. Activation of Notch signaling is normally tightly controlled by direct interactions with ligand-expressing cells, and dysregulated Notch signaling is associated with developmental abnormalities and cancer. While canonical Notch ligands are responsible for the majority of Notch signaling, a diverse group of structurally unrelated noncanonical ligands has also been identified that activate Notch and likely contribute to the pleiotropic effects of Notch signaling. Soluble forms of both canonical and noncanonical ligands have been isolated, some of which block Notch signaling and could serve as natural inhibitors of this pathway. Ligand activity can also be indirectly regulated by other signaling pathways at the level of ligand expression, serving to spatiotemporally compartmentalize Notch signaling activity and integrate Notch signaling into a molecular network that orchestrates developmental events. Here, we review the molecular mechanisms underlying the dual role of Notch ligands as activators and inhibitors of Notch signaling. Additionally, evidence that Notch ligands function independent of Notch is presented. We also discuss how ligand posttranslational modification, endocytosis, proteolysis, and spatiotemporal expression regulate their signaling activity.


Assuntos
Processamento de Proteína Pós-Traducional , Receptores Notch/química , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Humanos , Ligantes
8.
J Bone Miner Res ; 25(4): 782-95, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19839776

RESUMO

We previously reported that specific oxysterols stimulate osteogenic differentiation of pluripotent bone marrow stromal cells (MSCs) through activation of hedgehog (Hh) signaling and may serve as potential future therapies for intervention in osteopenia and osteoporosis. In this study we report that the osteogenic oxysterol 20(S)-hydroxycholesterol (20S) induces the expression of genes associated with Notch signaling. Using M2-10B4 (M2) MSCs, we found that 20S significantly induced HES-1, HEY-1, and HEY-2 mRNA expression compared with untreated cells, with maximal induction after 48 hours, whereas the nonosteogenic oxysterols did not. Similar observations were made when M2 cells were treated with sonic hedgehog (Shh), and the specific Hh pathway inhibitor cyclopamine blocked 20S-induced Notch target gene expression. 20S did not induce Notch target genes in Smo(-/-) mouse embryonic fibroblasts, further confirming the role of Hh signaling in 20S-induced expression of Notch target genes. Despite the inability of liver X-receptor (LXR) synthetic ligand TO901317 to induce Notch target genes in M2 cells, LXR knockdown studies using siRNA showed inhibition of 20S-induced HEY-1 but not HES-1 expression, suggesting the partial role of LXR signaling in MSC responses to 20S. Moreover, 20S-induced Notch target gene expression was independent of canonical Notch signaling because neither 20S nor Shh induced CBF1 luciferase reporter activity or NICD protein accumulation in the nucleus, which are hallmarks of canonical Notch signaling activation. Finally, HES-1 and HEY-1 siRNA transfection significantly inhibited 20S-induced osteogenic genes, suggesting that the pro-osteogenic effects of 20S are regulated in part by HES-1 and HEY-1.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Osteogênese/efeitos dos fármacos , Receptores Notch/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/análise , Proteínas de Homeodomínio/metabolismo , Receptores X do Fígado , Camundongos , Receptores Nucleares Órfãos/análise , Receptores Nucleares Órfãos/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Fatores de Transcrição HES-1 , Alcaloides de Veratrum/farmacologia
9.
Mol Cell Biol ; 29(21): 5679-95, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19704010

RESUMO

Notch signaling requires a series of proteolytic cleavage events to release the Notch intracellular domain (NICD) that functions directly in signal transduction. The Notch receptor is locked down in a protease-resistant state by a negative regulatory region (NRR) that protects an ADAM (a disintegrin and metalloprotease) cleavage site. Engagement with ligand-bearing cells induces global conformational movements in Notch that unfold the NRR structure to expose the ADAM cleavage site and initiate proteolytic activation. Although both ADAM10 and ADAM17 have been reported to cleave Notch to facilitate NICD release by gamma-secretase, the relevant ADAM has remained controversial. Our study provides new insight into this conflict, as we find that although Notch1 (N1) is a substrate for both ADAM10 and ADAM17, the particular ADAM required for receptor activation is context dependent. Specifically, ADAM10 was absolutely required for N1 signaling induced by ligands, while signaling independent of ligands required ADAM17. In contrast to the strict and differential use of ADAM10 and ADAM17 in normal and dysregulated signaling, respectively, both proteases participated in signaling intrinsic to N1 mutations associated with leukemia. We propose that in addition to exposing the ADAM cleavage site, activating N1 conformational changes facilitate selective cleavage by specific proteases.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteína ADAM10 , Proteína ADAM17 , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos/enzimologia , Humanos , Leucemia-Linfoma de Células T do Adulto/enzimologia , Ligantes , Camundongos , Mutação/genética , Estrutura Terciária de Proteína , Interferência de RNA , Receptores Notch/química
10.
J Biol Chem ; 284(39): 26427-38, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19567869

RESUMO

Notch is a transmembrane receptor that controls cell fate decisions during development and tissue homeostasis. Both activation and attenuation of the Notch signal are tightly regulated by endocytosis. The adaptor protein Numb acts as an inhibitor of Notch and is known to function within the intracellular trafficking pathways. However, a role for Numb in regulating Notch trafficking has not been defined. Here we show that mammalian Notch1 is constitutively internalized and trafficked to both recycling and late endosomal compartments, and we demonstrate that changes in Numb expression alter the dynamics of Notch1 trafficking. Overexpression of Numb promotes sorting of Notch1 through late endosomes for degradation, whereas depletion of Numb facilitates Notch1 recycling. Numb mutants that do not interact with the ubiquitin-protein isopeptide ligase, Itch, or that lack motifs important for interaction with endocytic proteins fail to promote Notch1 degradation. Our data suggest that Numb inhibits Notch1 activity by regulating post-endocytic sorting events that lead to Notch1 degradation.


Assuntos
Endocitose , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptor Notch1/metabolismo , Animais , Western Blotting , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Imuno-Histoquímica , Espaço Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia de Fluorescência , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Transporte Proteico , Interferência de RNA , Receptor Notch1/genética , Transfecção
11.
Traffic ; 8(8): 959-69, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17547700

RESUMO

The Notch pathway is a highly conserved and ubiquitous signaling system that functions in determining a diverse array of cell fates and regulates many cellular processes during embryonic development and throughout adulthood. Links to cancer, stroke and Alzheimer's disease underscore the need to define the molecular basis of Notch activation. Notch signaling is induced through direct cell-cell interactions that promote receptor activation following engagement with a membrane-bound Delta, Serrate, Lag-2 (DSL) ligand on adjacent cells. Cells take on distinct fates because Notch signaling is consistently activated in only one of the two interacting cells, highlighting the importance of establishing and maintaining signaling polarity. Studies in flies and worms have identified positive and negative transcriptional feedback mechanisms that amplify small differences in Notch and DSL ligand expression to bias which cells send or receive signals. However, endocytosis by signal-sending and signal-receiving cells also appears critical for directing and regulating Notch activation. In particular, endocytosis and membrane trafficking of DSL ligands, Notch and modulators can determine the competence of cells to send or receive signals that ensure reproducibility in generating cell types regulated by Notch signaling.


Assuntos
Receptores Notch/fisiologia , Transdução de Sinais/fisiologia , Animais , Endocitose/fisiologia , Humanos
12.
J Cell Biol ; 176(4): 445-58, 2007 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-17296795

RESUMO

Cleavage of Notch by furin is required to generate a mature, cell surface heterodimeric receptor that can be proteolytically activated to release its intracellular domain, which functions in signal transduction. Current models propose that ligand binding to heterodimeric Notch (hNotch) induces a disintegrin and metalloprotease (ADAM) proteolytic release of the Notch extracellular domain (NECD), which is subsequently shed and/or endocytosed by DSL ligand cells. We provide evidence for NECD release and internalization by DSL ligand cells, which, surprisingly, did not require ADAM activity. However, losses in either hNotch formation or ligand endocytosis significantly decreased NECD transfer to DSL ligand cells, as well as signaling in Notch cells. Because endocytosis-defective ligands bind hNotch, but do not dissociate it, additional forces beyond those produced through ligand binding must function to disrupt the intramolecular interactions that keep hNotch intact and inactive. Based on our findings, we propose that mechanical forces generated during DSL ligand endocytosis function to physically dissociate hNotch, and that dissociation is a necessary step in Notch activation.


Assuntos
Endocitose/fisiologia , Peptídeo Hidrolases/metabolismo , Receptor Notch1/metabolismo , Proteínas ADAM/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Dimerização , Humanos , Ligantes , Substâncias Macromoleculares , Camundongos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Receptor Notch1/química , Transdução de Sinais/fisiologia
13.
Development ; 133(17): 3277-82, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16908627

RESUMO

Over the past decade, the Notch signaling pathway has been shown to be crucially important for normal metazoan development and to be associated with several human inherited and late onset diseases. The realization that altered Notch signaling contributes at various levels to human disease lead in May to the first meeting dedicated solely to Notch signaling in vertebrate development and disease in Madrid, Spain. Hosted by the Cantoblanco Workshops on Biology and organized by Tom Gridley, José Luis de la Pompa and Juan Carlos Izpisúa Belmonte, the meeting covered diverse aspects of this important signaling pathway.


Assuntos
Receptores Notch/metabolismo , Animais , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/embriologia , Congressos como Assunto , Humanos , Hidrólise , Queratinócitos/patologia , Rim/embriologia , Fígado/embriologia , Transdução de Sinais , Somitos/patologia , Espanha , Linfócitos T/patologia , Transcrição Gênica/fisiologia , Ubiquitina/metabolismo , Vertebrados
14.
J Biol Chem ; 281(15): 10089-97, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16492672

RESUMO

Unlike most receptors, Notch serves as both the receiver and direct transducer of signaling events. Activation can be mediated by one of five membrane-bound ligands of either the Delta-like (-1, -2, -4) or Jagged/Serrate (-1, -2) families. Alternatively, dissociation of the Notch heterodimer with consequent activation can also be mediated experimentally by calcium chelators or by mutations that destabilize the Notch1 heterodimer, such as in the human disease T cell acute lymphoblastic leukemia. Here we show that MAGP-2, a protein present on microfibrils, can also interact with the EGF-like repeats of Notch1. Co-expression of MAGP-2 with Notch1 leads to both cell surface release of the Notch1 extracellular domain and subsequent activation of Notch signaling. Moreover, we demonstrate that the C-terminal domain of MAGP-2 is required for binding and activation of Notch1. Based on the high level of homology, we predicted and further showed that MAGP-1 can also bind to Notch1, cause the release of the extracellular domain, and activate signaling. Notch1 extracellular domain release induced by MAGP-2 is dependent on formation of the Notch1 heterodimer by a furin-like cleavage, but does not require the subsequent ADAM metalloprotease cleavage necessary for production of the Notch signaling fragment. Together these results demonstrate for the first time that the microfibrillar proteins MAGP-1 and MAGP-2 can function outside of their role in elastic fibers to activate a cellular signaling pathway.


Assuntos
Proteínas Contráteis/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/fisiologia , Receptor Notch1/química , Animais , Biotinilação , Western Blotting , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , DNA/química , Dimerização , Eletroforese em Gel de Poliacrilamida , Genes Reporter , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Modelos Genéticos , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Processamento de RNA , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Transfecção , Técnicas do Sistema de Duplo-Híbrido
15.
J Cell Biol ; 170(6): 983-92, 2005 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-16144902

RESUMO

Mutations in the DSL (Delta, Serrate, Lag2) Notch (N) ligand Delta-like (Dll) 3 cause skeletal abnormalities in spondylocostal dysostosis, which is consistent with a critical role for N signaling during somitogenesis. Understanding how Dll3 functions is complicated by reports that DSL ligands both activate and inhibit N signaling. In contrast to other DSL ligands, we show that Dll3 does not activate N signaling in multiple assays. Consistent with these findings, Dll3 does not bind to cells expressing any of the four N receptors, and N1 does not bind Dll3-expressing cells. However, in a cell-autonomous manner, Dll3 suppressed N signaling, as was found for other DSL ligands. Therefore, Dll3 functions not as an activator as previously reported but rather as a dedicated inhibitor of N signaling. As an N antagonist, Dll3 promoted Xenopus laevis neurogenesis and inhibited glial differentiation of mouse neural progenitors. Finally, together with the modulator lunatic fringe, Dll3 altered N signaling levels that were induced by other DSL ligands.


Assuntos
Proteínas de Membrana/genética , Transdução de Sinais , Animais , Biotinilação , Linhagem Celular , Técnicas de Cocultura , Desenvolvimento Embrionário , Glicosiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Células L , Ligantes , Luciferases/metabolismo , Camundongos , Mutação , Células NIH 3T3 , Neurônios/química , Neurônios/metabolismo , Ratos , Tubulina (Proteína)/metabolismo , Xenopus laevis
16.
J Biol Chem ; 280(21): 20349-55, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15788413

RESUMO

Elastic fibers are composed of the protein elastin and a network of 10-12-nm microfibrils, which are composed of several glycoproteins, including fibrillin-1, fibrillin-2, and MAGP1/2 (microfibril-associated glycoproteins-1 and -2). Although fibrillins and MAGPs covalently associate, we find that the DSL (Delta/Serrate/LAG2) protein Jagged1, an activating ligand for Notch receptor signaling, also interacts with MAGP-2 in both yeast two-hybrid and coimmunoprecipitation studies. Interaction between Jagged1 and MAGP-2 requires the epidermal growth factor-like repeats of Jagged1. MAGP-2 was found complexed with the Jagged1 extracellular domain shed from 293T cells and COS-7 cells coexpressing full-length Jagged1 and MAGP-2. MAGP-2 shedding of the Jagged1 extracellular domain was decreased by the metalloproteinase hydroxamate inhibitor BB3103 implicating proteolysis in its release. Although MAGP-2 also interacted with the other DSL ligands, Jagged2 and Delta1, they were not found associated with MAGP-2 in the conditioned media, identifying differential effects of MAGP-2 on DSL ligand shedding. The related microfibrillar protein MAGP-1 was also found to interact with DSL ligands but, unlike MAGP-2, was unable to facilitate the shedding of Jagged1. Our findings suggest that in addition to its role in microfibrils, MAGP-2 may also affect cellular differentiation through modulating the Notch signaling pathway either by binding to cell surface DSL ligands or by facilitating release and/or stabilization of a soluble extracellular form of Jagged1.


Assuntos
Membrana Celular/metabolismo , Proteínas Contráteis/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas ADAM , Proteína ADAM17 , Animais , Especificidade de Anticorpos , Células COS , Proteínas de Ligação ao Cálcio , Linhagem Celular , Chlorocebus aethiops , Proteínas Contráteis/genética , Proteínas Contráteis/imunologia , Meios de Cultivo Condicionados , Fator de Crescimento Epidérmico/química , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/imunologia , Deleção de Genes , Expressão Gênica , Técnicas de Imunoadsorção , Peptídeos e Proteínas de Sinalização Intercelular , Ligantes , Proteínas de Membrana/genética , Metaloendopeptidases/metabolismo , Mutagênese , Fragmentos de Peptídeos/metabolismo , Fatores de Processamento de RNA , Proteínas Serrate-Jagged , Transfecção , Técnicas do Sistema de Duplo-Híbrido
17.
Mol Biol Cell ; 16(2): 927-42, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15574878

RESUMO

Fringe O-fucose-beta1,3-N-acetylglucosaminyltransferases modulate Notch signaling by potentiating signaling induced by Delta-like ligands, while inhibiting signaling induced by Serrate/Jagged1 ligands. Based on binding studies, the differential effects of Drosophila fringe (DFng) on Notch signaling are thought to result from alterations in Notch glycosylation that enhance binding of Delta to Notch but reduce Serrate binding. Here, we report that expression of mammalian fringe proteins (Lunatic [LFng], Manic [MFng], or Radical [RFng] Fringe) increased Delta1 binding and activation of Notch1 signaling in 293T and NIH 3T3 cells. Although Jagged1-induced signaling was suppressed by LFng and MFng, RFng enhanced signaling induced by either Delta1 or Jagged1, underscoring the diversity of mammalian fringe glycosyltransferases in regulating signaling downstream of different ligand-receptor combinations. Interestingly, suppression of Jagged1-induced Notch1 signaling did not correlate with changes in Jagged1 binding as found for Delta1. Our data support the idea that fringe glycosylation increases Delta1 binding to potentiate signaling, but we propose that although fringe glycosylation does not reduce Jagged1 binding to Notch1, the resultant ligand-receptor interactions do not effectively promote Notch1 proteolysis required for activation of downstream signaling events.


Assuntos
Proteínas de Drosophila/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Fosfatase Alcalina/análise , Animais , Biotinilação , Proteínas de Ligação ao Cálcio , Linhagem Celular , Técnicas de Cocultura , Ácido Edético/farmacologia , Fibroblastos/efeitos dos fármacos , Genes Reporter , Humanos , Hidrólise , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Jagged-1 , Ligantes , Luciferases/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Modelos Biológicos , Células NIH 3T3 , Receptor Notch1 , Proteínas Serrate-Jagged , Transdução de Sinais
18.
Annu Rev Cell Dev Biol ; 19: 367-95, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14570574

RESUMO

The Notch signaling pathway is known to govern various aspects of tissue differentiation during embryonic development by mediating local cell-cell interactions that often control cell fate. The conserved components that underlie Notch signaling have been isolated in vertebrates, leading to a biochemical delineation of a core Notch signaling pathway and functional studies of this pathway during embryogenesis. Herein we highlight recent progress in determining how Notch signaling contributes to the development of the vertebrate embryo. We first discuss the role of Notch in the process of segmentation where rapid changes have been shown to occur in both the spatial and temporal aspects of Notch signaling, which are critical for segmental patterning. Indeed, the role of Notch in segmentation re-emphasizes a recurring question in Notch biology: how are the components involved in Notch signaling regulated to ensure their dynamic properties? Second, we address this question by discussing recent work on the biochemical mechanisms that potentially regulate Notch signaling during segmentation, including those that act on the receptors, ligands, and signal transduction apparatus.


Assuntos
Padronização Corporal/fisiologia , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/metabolismo , Transdução de Sinais/genética , Somitos/metabolismo , Animais , Proteínas de Drosophila , Glicosilação , Humanos , Ligantes , Proteínas de Membrana/genética , N-Acetilglucosaminiltransferases/metabolismo , Receptores Notch , Somitos/citologia
19.
Dev Neurosci ; 25(2-4): 162-72, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12966214

RESUMO

Central nervous system germinal zones contain stem cells that generate both neurons and glia. In the recent past, these cells have been isolated, maintained in a variety of culture systems and used in vitro for subsequent characterization of molecular mechanisms underlying brain development. Factors that govern cell fate choices of these neural stem cells have not been fully elucidated, but recent studies suggest that age at the time of culture is an important intrinsic mechanism. Stem cell mitogens and Notch-DSL signaling are significant extrinsic factors. In the current study, we compare neurosphere cultures propagated from animals on embryonic day 12, embryonic day 18 and the day of birth and stimulated to divide by either basic fibroblast growth factor (bFGF) or transforming growth factor-alpha (TGF-alpha). As described for other systems, when bFGF was used, clonal neurospheres derived from the youngest age gave rise to a greater percentage of neurons. When TGF-alpha, acting via the epidermal growth factor receptor, was used, this effect was not observed, with neurospheres from younger animals giving rise to a similar percentage of neurons as those derived from older animals suggesting that this growth factor was either stimulating a different population of stem cells to proliferate, or that it was capable of overriding intrinsic mechanisms. Other differences were also observed when the two growth factors were compared, including age-dependent differences in the numbers of putative astrocytes and oligodendrocytes formed. We further assessed age-dependent influences on cell fate by assessing the effects of a lentivirally transduced constitutively activated Notch receptor on cell fate. At all ages studied, Notch activation resulted in a significantly greater number of GFAP-positive cells, seemingly overriding the greater neurogenic potential of younger stem cells. These data suggest that both extrinsic and intrinsic factors differentially regulate cell fate choices of progenitors during cortical development.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Córtex Cerebral/embriologia , Neurônios/citologia , Células-Tronco/citologia , Animais , Astrócitos/citologia , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Embrião de Mamíferos , Desenvolvimento Embrionário e Fetal/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Imunofluorescência , Vetores Genéticos , Humanos , Lentivirus/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Receptores Notch , Células-Tronco/efeitos dos fármacos , Transdução Genética , Fator de Crescimento Transformador alfa/farmacologia
20.
J Neurosci ; 23(14): 6132-40, 2003 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-12853432

RESUMO

Radial glia cells both generate neurons and physically guide nascent neurons to their target destination in the cortex, and as such they are essential for CNS development. It has been proposed that in the developing cerebellum, neuronal contact induces radial glia formation, however, the mechanisms involved in this process are not well understood. Here we demonstrate that neuronal induction of radial glia formation is the result of sequential signaling through Notch1 and erbB receptors. First, Notch1 activation by neuronal contact induces the glial expression of the brain lipid binding protein (BLBP) and erbB2 genes. Interestingly, two different signaling pathways mediate these effects of Notch1 on transcription, BLBP expression being dependent on Su(H), whereas erbB2 is regulated by a yet unidentified Notch1 pathway. The subsequent increase in erbB2 receptor expression makes the glia more responsive to neuronal NRG, which then induces the morphological transformation into radial glia. Thus, these results unveil some of the mechanisms underlying radial glia formation.


Assuntos
Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Superfície Celular , Transdução de Sinais/fisiologia , Fatores de Transcrição , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Diferenciação Celular/fisiologia , Movimento Celular , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Técnicas de Cocultura , Receptores ErbB/genética , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo , Fibroblastos/citologia , Genes Dominantes , Genes Reporter , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Biossíntese de Proteínas , Proteínas/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptor ErbB-2/genética , Receptor ErbB-4 , Receptor Notch1 , Proteínas Serrate-Jagged
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...