Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19482, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945613

RESUMO

Coral reefs are iconic ecosystems that support diverse, productive communities in both shallow and deep waters. However, our incomplete knowledge of cold-water coral (CWC) niche space limits our understanding of their distribution and precludes a complete accounting of the ecosystem services they provide. Here, we present the results of recent surveys of the CWC mound province on the Blake Plateau off the U.S. east coast, an area of intense human activity including fisheries and naval operations, and potentially energy and mineral extraction. At one site, CWC mounds are arranged in lines that total over 150 km in length, making this one of the largest reef complexes discovered in the deep ocean. This site experiences rapid and extreme shifts in temperature between 4.3 and 10.7 °C, and currents approaching 1 m s-1. Carbon is transported to depth by mesopelagic micronekton and nutrient cycling on the reef results in some of the highest nitrate concentrations recorded in the region. Predictive models reveal expanded areas of highly suitable habitat that currently remain unexplored. Multidisciplinary exploration of this new site has expanded understanding of the cold-water coral niche, improved our accounting of the ecosystem services of the reef habitat, and emphasizes the importance of properly managing these systems.


Assuntos
Antozoários , Ecossistema , Animais , Humanos , Recifes de Corais , Água , Temperatura
2.
Glob Chang Biol ; 29(1): 189-205, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271605

RESUMO

Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients.


Assuntos
Antozoários , Microbiota , Animais , Filogenia , Bactérias , Carbono
3.
Annu Rev Anim Biosci ; 10: 151-176, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843386

RESUMO

Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea.


Assuntos
Microbiota , Simbiose , Animais , Filogenia , Simbiose/fisiologia
4.
Sci Rep ; 10(1): 1768, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019964

RESUMO

There are numerous studies highlighting the impacts of direct and indirect stressors on marine organisms, and multi-stressor studies of their combined effects are an increasing focus of experimental work. Lophelia pertusa is a framework-forming cold-water coral that supports numerous ecosystem services in the deep ocean. These corals are threatened by increasing anthropogenic impacts to the deep-sea, such as global ocean change and hydrocarbon extraction. This study implemented two sets of experiments to assess the effects of future conditions (temperature: 8 °C and 12 °C, pH: 7.9 and 7.6) and hydrocarbon exposure (oil, dispersant, oil + dispersant combined) on coral health. Phenotypic response was assessed through three independent observations of diagnostic characteristics that were combined into an average health rating at four points during exposure and recovery. In both experiments, regardless of environmental condition, average health significantly declined during 24-hour exposure to dispersant alone but was not significantly altered in the other treatments. In the early recovery stage (24 hours), polyp health returned to the pre-exposure health state under ambient temperature in all treatments. However, increased temperature resulted in a delay in recovery (72 hours) from dispersant exposure. These experiments provide evidence that global ocean change can affect the resilience of corals to environmental stressors and that exposure to chemical dispersants may pose a greater threat than oil itself.


Assuntos
Antozoários/efeitos dos fármacos , Antozoários/fisiologia , Poluição Ambiental/efeitos adversos , Estresse Fisiológico/fisiologia , Poluentes Químicos da Água/efeitos adversos , Animais , Recifes de Corais , Ecossistema , Temperatura Alta , Hidrocarbonetos/administração & dosagem , Oceanos e Mares , Temperatura , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...