Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell Death Dis ; 15(5): 362, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796478

RESUMO

Advanced epithelial ovarian cancer (EOC) survival rates are dishearteningly low, with ~25% surviving beyond 5 years. Evidence suggests that cancer stem cells contribute to acquired chemoresistance and tumor recurrence. Here, we show that IRAK1 is upregulated in EOC tissues, and enhanced expression correlates with poorer overall survival. Moreover, low molecular weight hyaluronic acid, which is abundant in malignant ascites from patients with advanced EOC, induced IRAK1 phosphorylation leading to STAT3 activation and enhanced spheroid formation. Knockdown of IRAK1 impaired tumor growth in peritoneal disease models, and impaired HA-induced spheroid growth and STAT3 phosphorylation. Finally, we determined that TCS2210, a known inducer of neuronal differentiation in mesenchymal stem cells, is a selective inhibitor of IRAK1. TCS2210 significantly inhibited EOC growth in vitro and in vivo both as monotherapy, and in combination with cisplatin. Collectively, these data demonstrate IRAK1 as a druggable target for EOC.


Assuntos
Carcinoma Epitelial do Ovário , Ácido Hialurônico , Quinases Associadas a Receptores de Interleucina-1 , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Fator de Transcrição STAT3 , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Humanos , Fator de Transcrição STAT3/metabolismo , Feminino , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Ácido Hialurônico/metabolismo , Ácido Hialurônico/farmacologia , Animais , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral , Camundongos , Cisplatino/farmacologia , Camundongos Nus , Fosforilação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Peso Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cancers (Basel) ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190159

RESUMO

The perinucleolar compartment (PNC) is a small nuclear body that plays important role in tumorigenesis. PNC prevalence correlates with poor prognosis and cancer metastasis. Its expression in pediatric Ewing sarcoma (EWS) has not previously been documented. In this study, we analyzed 40 EWS tumor cases from Caucasian and Hispanic patients for PNC prevalence by immunohistochemical detection of polypyrimidine tract binding protein and correlated the prevalence with dysregulated microRNA profiles. EWS cases showed staining ranging from 0 to 100%, which were categorized as diffuse (≥77%, n = 9, high PNC) or not diffuse (<77%, n = 31) for low PNC. High PNC prevalence was significantly higher in Hispanic patients from the US (n = 6, p = 0.017) and in patients who relapsed with metastatic disease (n = 4; p = 0.011). High PNC was associated with significantly shorter disease-free survival and early recurrence compared to those with low PNC. Using NanoString digital profiling, high PNC tumors revealed upregulation of eight and downregulation of 18 microRNAs. Of these, miR-320d and miR-29c-3p had the most significant differential expression in tumors with high PNC. In conclusion, this is the first study that demonstrates the presence of PNC in EWS, reflecting its utility as a predictive biomarker associated with tumor metastasis, specific microRNA profile, Hispanic ethnic origin, and poor prognosis.

3.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047307

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the primary reason for cancer-related deaths in the US. Genetic mutations, drug resistance, the involvement of multiple signaling pathways, cancer stem cells (CSCs), and desmoplastic stroma, which hinders drug penetrance, contribute to poor chemotherapeutic efficacy. Hence, there is a need to identify novel drugs with improved delivery to improve treatment outcomes. Curcumin is one such compound that can inhibit multiple signaling pathways and CSCs. However, curcumin's clinical applicability for treating PDAC is limited because of its poor solubility in water and metabolic instability. Hence, we developed a difluorinated curcumin (CDF) analog that accumulates selectively in the pancreas and inhibits PDAC growth in vitro and in vivo. In the present work, we developed its 2-hydroxy-propyl-ß-cyclodextrin (HCD) inclusion complex to increase its water solubility and hydrolytic stability. The CDFHCD inclusion complex was characterized by spectroscopic, thermal, and microscopic techniques. The inclusion complex exhibited increased aqueous solubility, hydrolytic stability, and antiproliferative activity compared to parent CDF. Moreover, CDF and CDFHCD inhibited colony and spheroid formation, and induced cell cycle and apoptosis in PDAC cell lines. Hence, CDFHCD self-assembly is an efficient approach to increase water solubility and anticancer therapeutic efficacy, which now warrants advancement towards a clinical proof of concept in PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Curcumina , Neoplasias Pancreáticas , Humanos , Curcumina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Solubilidade , Água , Neoplasias Pancreáticas
4.
Mol Carcinog ; 62(2): 145-159, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36218231

RESUMO

Doublecortin like kinase 1 (DCLK1) plays a crucial role in several cancers including colon and pancreatic adenocarcinomas. However, its role in squamous cell carcinoma (SCC) remains unknown. To this end, we examined DCLK1 expression in head and neck SCC (HNSCC) and anal SCC (ASCC). We found that DCLK1 is elevated in patient SCC tissue, which correlated with cancer progression and poorer overall survival. Furthermore, DCLK1 expression is significantly elevated in human papilloma virus negative HNSCC, which are typically aggressive with poor responses to therapy. To understand the role of DCLK1 in tumorigenesis, we used specific shRNA to suppress DCLK1 expression. This significantly reduced tumor growth, spheroid formation, and migration of HNSCC cancer cells. To further the translational relevance of our studies, we sought to identify a selective DCLK1 inhibitor. Current attempts to target DCLK1 using pharmacologic approaches have relied on nonspecific suppression of DCLK1 kinase activity. Here, we demonstrate that DiFiD (3,5-bis [2,4-difluorobenzylidene]-4-piperidone) binds to DCLK1 with high selectivity. Moreover, DiFiD mediated suppression of DCLK1 led to G2/M arrest and apoptosis and significantly suppressed tumor growth of HNSCC xenografts and ASCC patient derived xenografts, supporting that DCLK1 is critical for SCC growth.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Quinases Semelhantes a Duplacortina , Pontos de Checagem da Fase G2 do Ciclo Celular , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais
5.
Front Oncol ; 12: 870473, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276125

RESUMO

Pancreatic cancer is a devastating disease with a dismal prognosis and poor treatment outcomes. Searching for new agents for pancreatic cancer treatment is of great significance. We previously identified a novel activity of compound C150 to inhibit pancreatic cancer epithelial-to-mesenchymal transition (EMT). Here, we further revealed its mechanism of action. C150 induced ER stress in pancreatic cancer cells and subsequently increased proteasome activity by enhancing proteasome assembly, which subsequently enhanced the degradation of critical EMT transcription factors (EMT-TFs). In addition, as cellular responses to ER stress, autophagy was elevated, and general protein synthesis was inhibited in pancreatic cancer cells. Besides EMT inhibition, the C150-induced ER stress resulted in G2/M cell cycle arrest, which halted cell proliferation and led to cellular senescence. In an orthotopic syngeneic mouse model, an oral dose of C150 at 150 mg/kg 3× weekly significantly increased survival of mice bearing pancreatic tumors, and reduced tumor growth and ascites occurrence. These results suggested that compound C150 holds promises in comprehensively inhibiting pancreatic cancer progression.

6.
Chemosphere ; 287(Pt 1): 131883, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34818820

RESUMO

Ecological risk assessments of chemicals are frequently based on laboratory toxicity data from a small number of model species that may be reared in labs for years or decades. These populations can undergo many processes in the lab including artificial selection, founder effect, and genetic drift, and may not adequately represent their wild counterparts, potentially undermining the goal of protecting natural populations. Here we measure variation in lethality to copper chloride among strains of an emerging model species in toxicology, Caenorhabditis elegans. We tested four wild strains from Chile, Germany, Kenya, and Madeira (Portugal) against several versions of the standard laboratory N2 strain from Bristol, UK used in molecular biology. The four wild strains were more sensitive than any of the N2 strains tested with copper. We also found that the standard N2 strain cultured in the laboratory for >1 year was less sensitive than a recently cultured N2 strain as well as a cataloged ancestral version of the N2 strain. These results suggest that toxicologists should be cognizant of performing toxicity testing with long-held animal cultures, and should perhaps use multiple strains as well as renew cultures periodically in the laboratory. This study also shows that multi-strain toxicity testing with nematodes is highly achievable and useful for understanding variation in intra- and interspecific chemical sensitivity.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/genética , Cobre/toxicidade , Laboratórios , Testes de Toxicidade
7.
Mol Carcinog ; 61(2): 173-199, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34559922

RESUMO

Cancer and the immune system share an intimate relationship. Chronic inflammation increases the risk of cancer occurrence and can also drive inflammatory mediators into the tumor microenvironment enhancing tumor growth and survival. The p38 MAPK pathway is activated both acutely and chronically by stress, inflammatory chemokines, chronic inflammatory conditions, and cancer. These properties have led to extensive efforts to find effective drugs targeting p38, which have been unsuccessful. The immediate downstream serine/threonine kinase and substrate of p38 MAPK, mitogen-activated-protein-kinase-activated-protein-kinase-2 (MK2) protects cells against stressors by regulating the DNA damage response, transcription, protein and messenger RNA stability, and motility. The phosphorylation of downstream substrates by MK2 increases inflammatory cytokine production, drives an immune response, and contributes to wound healing. By binding directly to p38 MAPK, MK2 is responsible for the export of p38 MAPK from the nucleus which gives MK2 properties that make it unique among the large number of p38 MAPK substrates. Many of the substrates of both p38 MAPK and MK2 are separated between the cytosol and nucleus and interfering with MK2 and altering this intracellular translocation has implications for the actions of both p38 MAPK and MK2. The inhibition of MK2 has shown promise in combination with both chemotherapy and radiotherapy as a method for controlling cancer growth and metastasis in a variety of cancers. Whereas the current data are encouraging the field requires the development of selective and well tolerated drugs to target MK2 and a better understanding of its effects for effective clinical use.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias , Proteínas Serina-Treonina Quinases/metabolismo , Sobrevivência Celular , Humanos , Sistema de Sinalização das MAP Quinases , Microambiente Tumoral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Data Brief ; 39: 107544, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34815991

RESUMO

Twenty-four hour median lethal concentration (LC50) toxicity tests were performed with five species of nematodes (Caenorhabditis elegans, Caenorhabditis briggsae, Pristionchus pacificus, Oscheius tipulae, and Oscheius myriophila) in response to copper chloride and zinc chloride. In addition, lethality tests were also performed with seven strains of C. elegans (N2 > 1 year in culture, N2 newly acquired, N2 ancestral, ED3053, JU258, JU1171, and MY1) exposed to copper chloride. Nominal chemical concentrations were validated and analyzed according to U.S. Environmental Protection Agency method 6010 using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). This paper combines the datasets previously published separately by Heaton et al. (2020, 2022). The goal is to catalog all raw and analyzed toxicity data collected from both studies in a single consistent information source for use by the scientific community.

9.
Cells ; 10(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206989

RESUMO

Honokiol (HNK) is a biphenolic compound that has been used in traditional medicine for treating various ailments, including cancers. In this study, we determined the effect of HNK on colon cancer cells in culture and in a colitis-associated cancer model. HNK treatment inhibited proliferation and colony formation while inducing apoptosis. In addition, HNK suppressed colonosphere formation. Molecular docking suggests that HNK interacts with reserve stem cell marker protein DCLK1, with a binding energy of -7.0 Kcal/mol. In vitro kinase assays demonstrated that HNK suppressed the DCLK1 kinase activity. HNK also suppressed the expression of additional cancer stem cell marker proteins LGR5 and CD44. The Hippo signaling pathway is active in intestinal stem cells. In the canonical pathway, YAP1 is phosphorylated at Ser127 by upstream Mst1/2 and Lats1/2. This results in the sequestration of YAP1 in the cytoplasm, thereby not allowing YAP1 to translocate to the nucleus and interact with TEAD1-4 transcription factors to induce gene expression. However, HNK suppressed Ser127 phosphorylation in YAP1, but the protein remains sequestered in the cytoplasm. We further determined that this occurs by YAP1 interacting with PUMA. To determine if this also occurs in vivo, we performed studies in an AOM/DSS induced colitis-associated cancer model. HNK administered by oral gavage at a dose of 5mg/kg bw for 24 weeks demonstrated a significant reduction in the expression of YAP1 and TEAD1 and in the stem marker proteins. Together, these data suggest that HNK prevents colon tumorigenesis in part by inducing PUMA-YAP1 interaction and cytoplasmic sequestration, thereby suppressing the oncogenic YAP1 activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Compostos de Bifenilo/farmacologia , Carcinogênese/patologia , Neoplasias do Colo/patologia , Lignanas/farmacologia , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite/complicações , Quinases Semelhantes a Duplacortina , Regulação para Baixo/efeitos dos fármacos , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos ICR , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco , Proteínas de Sinalização YAP
10.
Cell Death Dis ; 12(6): 562, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059639

RESUMO

Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131).


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Antifúngicos/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Ciclopirox/uso terapêutico , Antifúngicos/farmacologia , Ciclopirox/farmacologia , Humanos , Gradação de Tumores
11.
Cancer Lett ; 514: 12-29, 2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34022283

RESUMO

Overexpression of interferon induced transmembrane protein-1 (IFITM1) enhances tumor progression in multiple cancers, but its role in triple-negative breast cancer (TNBC) is unknown. Here, we explore the functional significance and regulation of IFITM1 in TNBC and strategies to target its expression. Immunohistochemistry staining of a tissue microarray demonstrates that IFITM1 is overexpressed in TNBC samples which is confirmed by TCGA analysis. Targeting IFITM1 by siRNA or CRISPR/Cas9 in TNBC cell lines significantly inhibits proliferation, colony formation, and wound healing in vitro. Orthotopic mammary fat pad and mammary intraductal studies reveal that loss of IFITM1 reduces TNBC tumor growth and invasion in vivo. RNA-seq analysis of IFITM1/KO cells reveals significant downregulation of several genes involved in proliferation, migration, and invasion and functional studies identified NF-κB as an important downstream target of IFITM1. Notably, siRNA knockdown of p65 reduces IFITM1 expression and a drug-repurposing screen of FDA approved compounds identified parthenolide, an NFκB inhibitor, as a cytotoxic agent for TNBC and an inhibitor of IFITM1 in vitro and in vivo. Overall, our findings suggest that targeting IFITM1 by suppressing interferon-alpha/NFκB signaling represents a novel therapeutic strategy for TNBC treatment.


Assuntos
Antígenos de Diferenciação/genética , Interferon-alfa/genética , NF-kappa B/genética , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/patologia
12.
Pharmacol Res Perspect ; 9(2): e00753, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33745223

RESUMO

Epigallocatechin-3-gallate (EGCG) has been considered an anticancer agent despite conflicting and discrepant bioavailability views. EGCG impairs the viability and self-renewal capacity of triple-negative breast cancer (TNBC) cells and makes them sensitive to estrogen via activating ER-α. Surprisingly, the mechanism of EGCG's action on TNBC cells remains unclear. CCN5/WISP-2 is a gatekeeper gene that regulates viability, ER-α, and stemness in TNBC and other types of cancers. This study aimed to investigate whether EGCG (free or encapsulated in nanoparticles) interacts with the CCN5 protein by emphasizing its bioavailability and enhancing its anticancer effect. We demonstrate that EGCG activates CCN5 to inhibit in vitro cell viability through apoptosis, the sphere-forming ability via reversing TNBC cells' stemness, and suppressing tumor growth in vivo. Moreover, we found EGCG-loaded nanoparticles to be functionally more active and superior in their tumor-suppressing ability than free-EGCG. Together, these studies identify EGCG (free or encapsulated) as a novel activator of CCN5 in TNBC cells and hold promise as a future therapeutic option for TNBC with upregulated CCN5 expression.


Assuntos
Proteínas de Sinalização Intercelular CCN/agonistas , Catequina/análogos & derivados , Sistemas de Liberação de Fármacos por Nanopartículas , Proteínas Repressoras/agonistas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proteínas de Sinalização Intercelular CCN/metabolismo , Catequina/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Proteínas Repressoras/metabolismo , Esferoides Celulares , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biotechnol Biofuels ; 14(1): 47, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622413

RESUMO

BACKGROUND: Ionic liquids (ILs) are promising pretreatment solvents for lignocellulosic biomass, but are largely prepared from petroleum precursors. Benzaldehydes from depolymerized lignin, such as vanillin, syringaldehyde, and 4-methoxy benzaldehyde, represent renewable feedstocks for the synthesis of ionic liquids. We herein report syntheses of novel lignin-derived ionic liquids, with extended N-alkyl chains, and examine their melting points, cellulose dissolution capacities, and toxicity profiles against Daphnia magna and E. coli strain 1A1. The latter organism has been engineered to produce isoprenol, a drop-in biofuel and precursor for commodity chemicals. RESULTS: The new N,N-diethyl and N,N-dipropyl methyl benzylammonium ILs were liquids at room temperature, showing 75-100 °C decreased melting points as compared to their N,N,N-trimethyl benzylammonium analog. Extension of N-alkyl chains also increased antibacterial activity threefold, while ionic liquids prepared from vanillin showed 2- to 4-fold lower toxicity as compared to those prepared from syringaldehyde and 4-methoxybenzaldehyde. The trend of antibacterial activity for anions of lignin-derived ILs was found to be methanesulfonate < acetate < hydroxide. Microcrystalline cellulose dissolution, from 2 to 4 wt% after 20 min at 100 °C, was observed in all new ILs using light microscopy and IR spectroscopy. CONCLUSIONS: Ionic liquids prepared from H-, S- and G-lignin oxidation products provided differential cytotoxic activity against E. coli and D. magna, suggesting these compounds could be tailored for application specificity within a biorefinery.

14.
Front Oncol ; 11: 773350, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976816

RESUMO

Pancreatic cancer cell epithelial-to-mesenchymal transition (EMT) is an important contributor to cell invasion and tumor progression. Therefore, targeting EMT may be beneficial for pancreatic cancer treatment. The aim of the present study was to report on the inhibitory effect of the novel compound C150 on the EMT of pancreatic cancer cells. C150 inhibited cell proliferation in multiple pancreatic cancer cells with IC50 values of 1-2.5 µM, while in an non-cancerous pancreatic epithelial cell line hTERT-HPNE the IC50 value was >12.5 µM. C150 significantly inhibited pancreatic cancer cell migration and invasion, as demonstrated by 3-dimensional cell invasion, wound healing and Boyden chamber Transwell migration-invasion assays. Moreover, C150 treatment decreased MMP-2 gene expression in PANC-1 cells and reduced MMP-2 activity in gelatin zymography assay. In an orthotopic mouse model of pancreatic cancer, C150 significantly reduced tumor growth at the dose of 15 mg/kg by intraperitoneal injection three times per week. Furthermore, C150 enhanced protein degradation of Snail, an important EMT-promoting transcription factor, and decreased the expression of the mesenchymal marker N-cadherin, while it increased the expression of the epithelial markers zonula occludens-1 and claudin-1. The findings of the present study suggested that C150 is a novel EMT inhibitor that may be promising for inhibiting pancreatic cancer growth and metastasis.

15.
Nutr Cancer ; 73(11-12): 2249-2271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33305598

RESUMO

Bladder cancer is the 9th most prevalent cancer worldwide and carries a protracted treatment course with significant patient expense, morbidity, and mortality. Over 95% of bladder cancers arise from the urothelium and invade into the underlying muscle layer before metastasizing. Trans-urethral resection and BCG therapy is the current first-line treatment for non-muscle invasive bladder cancer but carries a high rate of tumor recurrence and progression. The poor outcomes associated with advanced disease indicate the urgent need for new and improved treatment strategies. There is increasing investigation into the molecular signaling pathways involved in bladder cancer pathogenesis with the goal of uncovering potential therapeutic targets. This article reviews the major signaling pathways implicated in bladder cancer, including PI3K/AKT/mTOR, Ras/Raf/MEK/MAPK, NF-κB, Wnt/ß-catenin, Notch, Hedgehog, Hippo, JAK/STAT, and TGF-ß as well as major cellular receptors central to cancer pathophysiology, including EGFR, Her2, FGFR, and VEGF. We also discuss various naturally occurring phytochemicals that show evidence of targeting these molecular pathways including curcumin, resveratrol, green tea polyphenols, sulforaphane, erucin, genistein, genipin, baicalein, quercetin, isoquercitin, vitamin E, parthenolide, dioscin, triptolide, kaempferol, pterostilbene, isoliquiritigenin, and escin. This review highlights the potential use of these compounds in treatment of bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Genisteína , Humanos , Fosfatidilinositol 3-Quinases , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Transdução de Sinais , Neoplasias da Bexiga Urinária/tratamento farmacológico
16.
Ecotoxicology ; 30(1): 175-186, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33104962

RESUMO

Chemical contamination has been suggested as an important contributing factor to reptile population declines, but direct links are rarely reported. Population modeling provides a quantitative method to understand the long-term effects of contaminants on population persistence. We created a matrix model for Sceloporus lizards and investigated hypothetical toxic effects by reducing survival and reproductive parameters by 0 to 100% in 10% increments. We report effects on population growth rate (λ) and elasticity values for each stage due to these reductions. We then incorporated stochasticity to the model to simulate the variation seen in demographic data and quantified extinction risk. The deterministic model yielded a λ of 1.07 suggesting stability in some wild Sceloporus populations. A yearly reduction of 20 to 30% in demographic parameters was needed to push λ to decline in both our deterministic and stochastic simulations. Surprisingly, our baseline stochastic simulations had a 30% extinction probability despite a stable deterministic model. We tested three adjustments to the stochastic model, (1) increased survival/fecundity parameters, (2) higher starting densities, and (3) a density-dependent juvenile survival function. The model with density-dependent juvenile growth had the lowest extinction risk. Ultimately, 20 or 30% mortality every year is likely unrealistic, but our results provide insight in linking toxicity to population effects. Ultimately, very little reduction in demographics is needed to cause declines in these populations. Our generalized models provide important tools for screening-level risk assessment of chemical contamination, especially for taxonomic groups that tend to receive less research interest.


Assuntos
Poluentes Ambientais , Crescimento Demográfico , Animais , Modelos Biológicos , Dinâmica Populacional , Probabilidade , Processos Estocásticos
17.
Stem Cell Rev Rep ; 16(5): 979-991, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32740891

RESUMO

BACKGROUND: Because of their well-described immunosuppressive properties, allogeneic adult human mesenchymal stromal cells (MSC) derived from bone marrow have demonstrated safety and efficacy in steroid refractory acute graft versus host disease (SR aGVHD). Clinical trials have resulted in variable success and an optimal source of MSC has yet to be defined. Based on the importance of maternal-fetal interface immune tolerance, extraembryonic fetal tissues, such as the umbilical cord, may provide an superior tissue source of MSC to mediate immunomodulation in aGVHD. METHODS: A two-dose cohort trial allogeneic Wharton's Jelly-derived mesenchymal stromal cells (WJMSC, referred to as MSCTC-0010, here) were tested in 10 patients with de novo high risk (HR) or SR aGVHD post allogeneic hematopoietic stem cell transplantation (allo-HCT). Following Good Manufacturing Practices isolation, expansion and cryostorage, WJMSC were thawed and administered via intravenous infusions on days 0 and 7 at one of two doses (low dose cohort, 2 × 106/kg, n = 5; high dose cohort, 10 × 106/kg, n = 5). To evaluate safety, patients were monitored for infusion related toxicity, Treatment Related Adverse Events (TRAE) til day 42, or ectopic tissue formation at day 90. Clinical responses were monitored at time points up to 180 days post infusion. Serum biomarkers ST2 and REG3α were acquired 1 day prior to first MSCTC-0010 infusion and on day 14. RESULTS: Safety was indicated, e.g., no infusion-related toxicity, no development of TRAE, nor ectopic tissue formation in either low or high dose cohort was observed. Clinical response was suggested at day 28: the overall response rate (ORR) was 70%, 4 of 10 patients had a complete response (CR) and 3 had a partial response (PR). By study day 90, the addition of escalated immunosuppressive therapy was necessary in 2 of 9 surviving patients. Day 100 and 180 post infusion survival was 90% and 60%, respectively. Serum biomarker REG3α decreased, particularly in the high dose cohort, and with REG3α decrease correlated with clinical response. CONCLUSIONS: Treatment of patients with de novo HR or SR aGVHD with low or high dose MSCTC-0010 was safe: the infusion was well-tolerated, and no TRAEs or ectopic tissue formation was observed. A clinical improvement was seen in about 70% patients, with 4 of 10 showing a complete response that may have been attributable to MSCTC-0010 infusions. These observations indicate safety of two different doses of MSCTC-0010, and suggest that the 10 × 106 cells/ kg dose be tested in an expanded randomized, controlled Phase 2 trial. Graphical abstract.


Assuntos
Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Geleia de Wharton/citologia , Doença Aguda , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Viabilidade , Feminino , Doença Enxerto-Hospedeiro/patologia , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Pessoa de Meia-Idade , Proteínas Associadas a Pancreatite/metabolismo , Recidiva , Fatores de Risco , Análise de Sobrevida
18.
Nat Cell Biol ; 22(6): 689-700, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32313104

RESUMO

Leukaemia stem cells (LSCs) underlie cancer therapy resistance but targeting these cells remains difficult. The Wnt-ß-catenin and PI3K-Akt pathways cooperate to promote tumorigenesis and resistance to therapy. In a mouse model in which both pathways are activated in stem and progenitor cells, LSCs expanded under chemotherapy-induced stress. Since Akt can activate ß-catenin, inhibiting this interaction might target therapy-resistant LSCs. High-throughput screening identified doxorubicin (DXR) as an inhibitor of the Akt-ß-catenin interaction at low doses. Here we repurposed DXR as a targeted inhibitor rather than a broadly cytotoxic chemotherapy. Targeted DXR reduced Akt-activated ß-catenin levels in chemoresistant LSCs and reduced LSC tumorigenic activity. Mechanistically, ß-catenin binds multiple immune-checkpoint gene loci, and targeted DXR treatment inhibited expression of multiple immune checkpoints specifically in LSCs, including PD-L1, TIM3 and CD24. Overall, LSCs exhibit distinct properties of immune resistance that are reduced by inhibiting Akt-activated ß-catenin. These findings suggest a strategy for overcoming cancer therapy resistance and immune escape.


Assuntos
Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , PTEN Fosfo-Hidrolase/fisiologia , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Death Dis ; 11(2): 149, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094348

RESUMO

Osteosarcoma (OS) is the most common primary bone tumor that primarily affects children and adolescents. Studies suggested that dysregulation JAK/STAT signaling promotes the development of OS. Cells treated with pimozide, a STAT5 inhibitor suppressed proliferation and colony formation and induced sub G0/G1 cell cycle arrest and apoptosis. There was a reduction in cyclin D1 and CDK2 expression and Rb phosphorylation, and activation of Caspase-3 and PARP cleavage. In addition, pimozide suppressed the formation of 3-dimensional osteospheres and growth of the cells in the Tumor in a Dish lung organoid system. Furthermore, there was a reduction in expression of cancer stem cell marker proteins DCLK1, CD44, CD133, Oct-4, and ABCG2. More importantly, it was the short form of DCLK1 that was upregulated in osteospheres, which was suppressed in response to pimozide. We further confirmed by flow cytometry a reduction in DCLK1+ cells. Moreover, pimozide inhibits the phosphorylation of STAT5, STAT3, and ERK in OS cells. Molecular docking studies suggest that pimozide interacts with STAT5A and STAT5B with binding energies of -8.4 and -6.4 Kcal/mol, respectively. Binding was confirmed by cellular thermal shift assay. To further understand the role of STAT5, we knocked down the two isoforms using specific siRNAs. While knockdown of the proteins did not affect the cells, knockdown of STAT5B reduced pimozide-induced necrosis and further enhanced late apoptosis. To determine the effect of pimozide on tumor growth in vivo, we administered pimozide intraperitoneally at a dose of 10 mg/kg BW every day for 21 days in mice carrying KHOS/NP tumor xenografts. Pimozide treatment significantly suppressed xenograft growth. Western blot and immunohistochemistry analyses also demonstrated significant inhibition of stem cell marker proteins. Together, these data suggest that pimozide treatment suppresses OS growth by targeting both proliferating cells and stem cells at least in part by inhibiting the STAT5 signaling pathway.


Assuntos
Osteossarcoma/tratamento farmacológico , Pimozida/farmacologia , Fator de Transcrição STAT5/farmacologia , Proteínas Supressoras de Tumor/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/metabolismo , Fator de Transcrição STAT5/efeitos dos fármacos , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Environ Toxicol Chem ; 39(5): 1006-1016, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32072668

RESUMO

Performing toxicity testing on multiple species with differing degrees of evolutionary relatedness can provide important information on how chemical sensitivity varies among species and can help pinpoint the biological drivers of species sensitivity. Such knowledge could ultimately be used to design better multispecies predictive ecological risk assessment models and identify particularly sensitive species. However, laboratory toxicity tests involving multiple species can also be resource intensive, especially when each species has unique husbandry conditions. We performed lethality tests with 2 metals, copper chloride and zinc chloride, on 5 different nematode species, which are nested in their degree of evolutionary relatedness: Caenorhabditis briggsae, Caenorhabditis elegans, Oscheius myriophila, Oscheius tipulae, and Pristionchus pacificus. All species were successfully cultured and tested concurrently with limited resources, demonstrating that inexpensive, multispecies nematode toxicity testing systems are achievable. The results indicate that P. pacificus is the most sensitive to both metals. Conversely, C. elegans is the least sensitive species to copper, but the second most sensitive to zinc, indicating that species relationships do not necessarily predict species sensitivity. Toxicity testing with additional nematode species and types of chemicals is feasible and will help form more generalizable conclusions about relative species sensitivity. Environ Toxicol Chem 2020;39:1006-1016. © 2020 SETAC.


Assuntos
Metais/toxicidade , Nematoides/efeitos dos fármacos , Animais , Caenorhabditis elegans/efeitos dos fármacos , Cobre/toxicidade , Filogenia , Especificidade da Espécie , Zinco/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...