Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36960826

RESUMO

The murine kidney and ureter develop in a regionalized fashion from the ureteric bud and its surrounding mesenchyme. Whereas the factors that establish the metanephric cell lineages have been well characterized, much less is known about the molecular cues that specify the ureter. Here, we have identified a crucial patterning function in this process for Tbx18, a T-box transcription factor gene specifically expressed in the mesenchymal primordium of the ureter. Using misexpression and loss-of-function mice combined with molecular profiling approaches, we show that Tbx18 is required and sufficient to repress metanephric mesenchymal gene programs. We identify Wt1 as a functional target of TBX18. Our work suggests that TBX18 acts as a permissive factor in ureter specification by generating a mesenchymal domain around the distal ureteric bud where SHH and BMP4 signaling can occur.


Assuntos
Ureter , Camundongos , Animais , Ureter/metabolismo , Rim/metabolismo , Transdução de Sinais/genética , Linhagem da Célula/genética , Expressão Gênica , Mesoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
2.
J Am Soc Nephrol ; 34(2): 273-290, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414417

RESUMO

BACKGROUND: About 40 disease genes have been described to date for isolated CAKUT, the most common cause of childhood CKD. However, these genes account for only 20% of cases. ARHGEF6, a guanine nucleotide exchange factor that is implicated in biologic processes such as cell migration and focal adhesion, acts downstream of integrin-linked kinase (ILK) and parvin proteins. A genetic variant of ILK that causes murine renal agenesis abrogates the interaction of ILK with a murine focal adhesion protein encoded by Parva , leading to CAKUT in mice with this variant. METHODS: To identify novel genes that, when mutated, result in CAKUT, we performed exome sequencing in an international cohort of 1265 families with CAKUT. We also assessed the effects in vitro of wild-type and mutant ARHGEF6 proteins, and the effects of Arhgef6 deficiency in mouse and frog models. RESULTS: We detected six different hemizygous variants in the gene ARHGEF6 (which is located on the X chromosome in humans) in eight individuals from six families with CAKUT. In kidney cells, overexpression of wild-type ARHGEF6 -but not proband-derived mutant ARHGEF6 -increased active levels of CDC42/RAC1, induced lamellipodia formation, and stimulated PARVA-dependent cell spreading. ARHGEF6-mutant proteins showed loss of interaction with PARVA. Three-dimensional Madin-Darby canine kidney cell cultures expressing ARHGEF6-mutant proteins exhibited reduced lumen formation and polarity defects. Arhgef6 deficiency in mouse and frog models recapitulated features of human CAKUT. CONCLUSIONS: Deleterious variants in ARHGEF6 may cause dysregulation of integrin-parvin-RAC1/CDC42 signaling, thereby leading to X-linked CAKUT.


Assuntos
Sistema Urinário , Anormalidades Urogenitais , Humanos , Camundongos , Animais , Cães , Anormalidades Urogenitais/genética , Rim/anormalidades , Sistema Urinário/anormalidades , Integrinas/metabolismo , Proteínas Mutantes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética
3.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905011

RESUMO

Smooth muscle cells (SMCs) are a crucial component of the mesenchymal wall of the ureter, as they account for the efficient removal of the urine from the renal pelvis to the bladder by means of their contractile activity. Here, we show that the zinc-finger transcription factor gene Gata6 is expressed in mesenchymal precursors of ureteric SMCs under the control of BMP4 signaling. Mice with a conditional loss of Gata6 in these precursors exhibit a delayed onset and reduced level of SMC differentiation and peristaltic activity, as well as dilatation of the ureter and renal pelvis (hydroureternephrosis) at birth and at postnatal stages. Molecular profiling revealed a delayed and reduced expression of the myogenic driver gene Myocd, but the activation of signaling pathways and transcription factors previously implicated in activation of the visceral SMC program in the ureter was unchanged. Additional gain-of-function experiments suggest that GATA6 cooperates with FOXF1 in Myocd activation and SMC differentiation, possibly as pioneer and lineage-determining factors, respectively.


Assuntos
Ureter , Animais , Diferenciação Celular/genética , Camundongos , Desenvolvimento Muscular , Músculo Liso , Miócitos de Músculo Liso/fisiologia , Ureter/metabolismo
4.
Development ; 149(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35103284

RESUMO

The contractile phenotype of smooth muscle cells (SMCs) is transcriptionally controlled by a complex of the DNA-binding protein SRF and the transcriptional co-activator MYOCD. The pathways that activate expression of Myocd and of SMC structural genes in mesenchymal progenitors are diverse, reflecting different intrinsic and extrinsic signaling inputs. Taking the ureter as a model, we analyzed whether Notch signaling, a pathway previously implicated in vascular SMC development, also affects visceral SMC differentiation. We show that mice with a conditional deletion of the unique Notch mediator RBPJ in the undifferentiated ureteric mesenchyme exhibit altered ureter peristalsis with a delayed onset, and decreased contraction frequency and intensity at fetal stages. They also develop hydroureter 2 weeks after birth. Notch signaling is required for precise temporal activation of Myocd expression and, independently, for expression of a group of late SMC structural genes. Based on additional expression analyses, we suggest that a mesenchymal JAG1-NOTCH2/NOTCH3 module regulates visceral SMC differentiation in the ureter in a biphasic and bimodal manner, and that its molecular function differs from that in the vascular system.


Assuntos
Diferenciação Celular , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais , Ureter/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diaminas/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Transativadores/genética , Transativadores/metabolismo , Ureter/citologia , Ureter/crescimento & desenvolvimento , Vísceras/citologia , Vísceras/metabolismo
5.
Glycobiology ; 31(11): 1478-1489, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34224569

RESUMO

Among the enzymes of the biosynthesis of sialoglycoconjugates, uridine diphosphate-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE), catalyzing the first essential step of the sialic acid (Sia) de novo biosynthesis, and cytidine monophosphate (CMP)-Sia synthase (CMAS), activating Sia to CMP-Sia, are particularly important. The knockout of either of these enzymes in mice is embryonically lethal. While the lethality of Cmas-/- mice has been attributed to a maternal complement attack against asialo fetal placental cells, the cause of lethality in Gne-deficient embryos has remained elusive. Here, we advanced the significance of sialylation for embryonic development through detailed histological analyses of Gne-/- embryos and placentae. We found that Gne-/- embryonic and extraembryonic tissues are hyposialylated rather than being completely deficient of sialoglycans, which holds true for Cmas-/- embryos. Residual sialylation of Gne-/- cells can be explained by scavenging free Sia from sialylated maternal serum glycoconjugates via the lysosomal salvage pathway. The placental architecture of Gne-/- mice was unaffected, but severe hemorrhages in the neuroepithelium with extensive bleeding into the cephalic ventricles were present at E12.5 in the mutants. At E13.5, the vast majority of Gne-/- embryos were asystolic. This phenotype persisted when Gne-/- mice were backcrossed to a complement component 3-deficient background, confirming distinct pathomechanisms of Cmas-/- and Gne-/- mice. We conclude that the low level of sialylation observed in Gne-/- mice is sufficient both for immune homeostasis at the fetal-maternal interface and for embryonic development until E12.5. However, formation of the neural microvasculature is the first critical process, depending on a higher degree of sialylation during development of the embryo proper.


Assuntos
Hemorragia Cerebral/metabolismo , Complexos Multienzimáticos/metabolismo , Animais , Biocatálise , Hemorragia Cerebral/patologia , Desenvolvimento Embrionário , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/deficiência , Ácido N-Acetilneuramínico/biossíntese
6.
Haematologica ; 106(5): 1354-1367, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32327499

RESUMO

Hematopoietic development is spatiotemporally tightly regulated by defined cell-intrinsic and extrinsic modifiers. The role of cytokines has been intensively studied in adult hematopoiesis; however, their role in embryonic hematopoietic specification remains largely unexplored. Here, we used induced pluripotent stem cell (iPSC) technology and established a 3-dimensional, organoid-like differentiation system (hemanoid) maintaining the structural cellular integrity to evaluate the effect of cytokines on embryonic hematopoietic development. We show, that defined stages of early human hematopoietic development were recapitulated within the generated hemanoids. We identified KDR+/CD34high/CD144+/CD43-/CD45- hemato-endothelial progenitor cells (HEPs) forming organized, vasculature-like structures and giving rise to CD34low/CD144-/CD43+/CD45+ hematopoietic progenitor cells. We demonstrate that the endothelial to hematopoietic transition of HEPs is dependent on the presence of interleukin 3 (IL-3). Inhibition of IL-3 signalling blocked hematopoietic differentiation and arrested the cells in the HEP stage. Thus, our data suggest an important role for IL-3 in early human hematopoiesis by supporting the endothelial to hematopoietic transition of hemato-endothelial progenitor cells and highlight the potential of a hemanoid-based model to study human hematopoietic development.


Assuntos
Células-Tronco Pluripotentes Induzidas , Interleucina-3 , Células-Tronco Pluripotentes , Adulto , Diferenciação Celular , Hematopoese , Humanos
7.
Hum Mol Genet ; 29(18): 3064-3080, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32886109

RESUMO

ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA/genética , Fígado/crescimento & desenvolvimento , Proteínas Musculares/genética , Fatores de Transcrição/genética , Animais , Ductos Biliares/crescimento & desenvolvimento , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Diferenciação Celular/genética , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Humanos , Fígado/anormalidades , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Morfogênese/genética , Transdução de Sinais/genética , Fatores de Transcrição de Domínio TEA , Proteínas de Sinalização YAP
8.
Eur J Hum Genet ; 28(12): 1681-1693, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32737436

RESUMO

Although over 50 genes are known to cause renal malformation if mutated, the underlying genetic basis, most easily identified in syndromic cases, remains unsolved in most patients. In search of novel causative genes, whole-exome sequencing in a patient with renal, i.e., crossed fused renal ectopia, and extrarenal, i.e., skeletal, eye, and ear, malformations yielded a rare heterozygous variant in the GDF6 gene encoding growth differentiation factor 6, a member of the BMP family of ligands. Previously, GDF6 variants were reported to cause pleiotropic defects including skeletal, e.g., vertebral, carpal, tarsal fusions, and ocular, e.g., microphthalmia and coloboma, phenotypes. To assess the role of GDF6 in the pathogenesis of renal malformation, we performed targeted sequencing in 193 further patients identifying rare GDF6 variants in two cases with kidney hypodysplasia and extrarenal manifestations. During development, gdf6 was expressed in the pronephric tubule of Xenopus laevis, and Gdf6 expression was observed in the ureteric tree of the murine kidney by RNA in situ hybridization. CRISPR/Cas9-derived knockout of Gdf6 attenuated migration of murine IMCD3 cells, an effect rescued by expression of wild-type but not mutant GDF6, indicating affected variant function regarding a fundamental developmental process. Knockdown of gdf6 in Xenopus laevis resulted in impaired pronephros development. Altogether, we identified rare heterozygous GDF6 variants in 1.6% of all renal anomaly patients and 5.4% of renal anomaly patients additionally manifesting skeletal, ocular, or auricular abnormalities, adding renal hypodysplasia and fusion to the phenotype spectrum of GDF6 variant carriers and suggesting an involvement of GDF6 in nephrogenesis.


Assuntos
Fator 6 de Diferenciação de Crescimento/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Animais , Linhagem Celular , Criança , Pré-Escolar , Feminino , Fator 6 de Diferenciação de Crescimento/metabolismo , Heterozigoto , Humanos , Lactente , Túbulos Renais/anormalidades , Túbulos Renais/metabolismo , Masculino , Camundongos , Mutação , Anormalidades Urogenitais/patologia , Refluxo Vesicoureteral/patologia , Xenopus
9.
J Pathol ; 252(3): 290-303, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32715478

RESUMO

Development of the mammalian kidney is orchestrated by reciprocal interactions of stromal and nephrogenic mesenchymal cells with the ureteric bud epithelium. Previous work showed that the transcription factor Wilms tumor 1 (WT1) acts in the nephrogenic lineage to maintain precursor cells, to drive the epithelial transition of aggregating precursors into a renal vesicle and to specify and maintain the podocyte fate. However, WT1 is expressed not only in the nephrogenic lineage but also transiently in stromal progenitors in the renal cortex. Here we report that specific deletion of Wt1 in the stromal lineage using the Foxd1cre driver line results at birth in cryptorchidism and hypoplastic kidneys that harbour fewer and enlarged ureteric bud tips and display an expansion of capsular stroma into the cortical region. In vivo and ex vivo analysis at earlier stages revealed that stromal loss of Wt1 reduces stromal proliferation, and delays and alters branching morphogenesis, resulting in a variant architecture of the collecting duct tree with an increase of single at the expense of bifurcated ureteric bud tips. Molecular analysis identified a transient reduction of Aldh1a2 expression and of retinoic acid signalling activity in stromal progenitors, and of Ret in ureteric bud tips. Administration of retinoic acid partly rescued the branching defects of mutant kidneys in culture. We propose that WT1 maintains retinoic acid signalling in the cortical stroma, which, in turn, assures proper levels and dynamics of Ret expression in the ureteric bud tips, and thus normal ramification of the ureteric tree. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Criptorquidismo/embriologia , Criptorquidismo/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Ureter/embriologia , Proteínas WT1/genética , Animais , Biomarcadores/metabolismo , Criptorquidismo/metabolismo , Rim/anormalidades , Rim/metabolismo , Masculino , Camundongos , Organogênese/genética , Ureter/anormalidades , Ureter/metabolismo , Proteínas WT1/metabolismo
10.
Hum Mol Genet ; 29(7): 1192-1204, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32179912

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of end-stage kidney disease in children. While the genetic aberrations underlying CAKUT pathogenesis are increasingly being elucidated, their consequences on a cellular and molecular level commonly remain unclear. Recently, we reported rare heterozygous deleterious LIFR variants in 3.3% of CAKUT patients, including a novel de novo frameshift variant, identified by whole-exome sequencing, in a patient with severe bilateral CAKUT. We also demonstrated CAKUT phenotypes in Lifr-/- and Lifr+/- mice, including a narrowed ureteric lumen due to muscular hypertrophy and a thickened urothelium. Here, we show that both in the ureter and bladder of Lifr-/- and Lifr+/- embryos, differentiation of the three urothelial cell types (basal, intermediate and superficial cells) occurs normally but that the turnover of superficial cells is elevated due to increased proliferation, enhanced differentiation from their progenitor cells (intermediate cells) and, importantly, shedding into the ureteric lumen. Microarray-based analysis of genome-wide transcriptional changes in Lifr-/- versus Lifr+/+ ureters identified gene networks associated with an antimicrobial inflammatory response. Finally, in a reverse phenotyping effort, significantly more superficial cells were detected in the urine of CAKUT patients with versus without LIFR variants indicating conserved LIFR-dependent urinary tract changes in the murine and human context. Our data suggest that LIFR signaling is required in the epithelium of the urinary tract to suppress an antimicrobial response under homeostatic conditions and that genetically induced inflammation-like changes underlie CAKUT pathogenesis in Lifr deficiency and LIFR haploinsufficiency.


Assuntos
Inflamação/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Anormalidades Urogenitais/genética , Animais , Exoma/genética , Haploinsuficiência/genética , Heterozigoto , Humanos , Inflamação/patologia , Rim/metabolismo , Rim/patologia , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/deficiência , Camundongos , Mutação/genética , Linhagem , Sistema Urinário/metabolismo , Sistema Urinário/patologia , Anormalidades Urogenitais/patologia , Urotélio/patologia , Sequenciamento do Exoma
11.
Gut ; 69(6): 1104-1115, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31767630

RESUMO

OBJECTIVE: Liver fibrosis and cirrhosis resulting from chronic liver injury represent a major healthcare burden worldwide. Growth differentiation factor (GDF) 11 has been recently investigated for its role in rejuvenation of ageing organs, but its role in chronic liver diseases has remained unknown. Here, we investigated the expression and function of GDF11 in liver fibrosis, a common feature of most chronic liver diseases. DESIGN: We analysed the expression of GDF11 in patients with liver fibrosis, in a mouse model of liver fibrosis and in hepatic stellate cells (HSCs) as well as in other liver cell types. The functional relevance of GDF11 in toxin-induced and cholestasis-induced mouse models of liver fibrosis was examined by in vivo modulation of Gdf11 expression using adeno-associated virus (AAV) vectors. The effect of GDF11 on leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5)+ liver progenitor cells was studied in mouse and human liver organoid culture. Furthermore, in vivo depletion of LGR5+ cells was induced by injecting AAV vectors expressing diptheria toxin A under the transcriptional control of Lgr5 promoter. RESULTS: We showed that the expression of GDF11 is upregulated in patients with liver fibrosis and in experimentally induced murine liver fibrosis models. Furthermore, we found that therapeutic application of GDF11 mounts a protective response against fibrosis by increasing the number of LGR5+ progenitor cells in the liver. CONCLUSION: Collectively, our findings uncover a protective role of GDF11 during liver fibrosis and suggest a potential application of GDF11 for the treatment of chronic liver disease.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fatores de Diferenciação de Crescimento/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Células-Tronco/metabolismo , Animais , Modelos Animais de Doenças , Imunofluorescência , Fluxo Gênico , Humanos , Hibridização In Situ , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima
12.
J Pathol ; 248(4): 452-463, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30916783

RESUMO

The establishment of the peristaltic machinery of the ureter is precisely controlled to cope with the onset of urine production in the fetal kidney. Retinoic acid (RA) has been identified as a signal that maintains the mesenchymal progenitors of the contractile smooth muscle cells (SMCs), while WNTs, SHH, and BMP4 induce their differentiation. How the activity of the underlying signalling pathways is controlled in time, space, and quantity to activate coordinately the SMC programme is poorly understood. Here, we provide evidence that the Zn-finger transcription factor GATA2 is involved in this crosstalk. In mice, Gata2 is expressed in the undifferentiated ureteric mesenchyme under control of RA signalling. Conditional deletion of Gata2 by a Tbx18cre driver results in hydroureter formation at birth, associated with a loss of differentiated SMCs. Analysis at earlier stages and in explant cultures revealed that SMC differentiation is not abrogated but delayed and that dilated ureters can partially regain peristaltic activity when relieved of urine pressure. Molecular analysis identified increased RA signalling as one factor contributing to the delay in SMC differentiation, possibly caused by reduced direct transcriptional activation of Cyp26a1, which encodes an RA-degrading enzyme. Our study identified GATA2 as a feedback inhibitor of RA signalling important for precise onset of ureteric SMC differentiation, and suggests that in a subset of cases of human congenital ureter dilatations, temporary relief of urine pressure may ameliorate the differentiation status of the SMC coat. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Diferenciação Celular , Fator de Transcrição GATA2/deficiência , Mesoderma/embriologia , Miócitos de Músculo Liso/fisiologia , Ureter/embriologia , Doenças Ureterais/embriologia , Animais , Biomarcadores/metabolismo , Feminino , Fator de Transcrição GATA2/genética , Masculino , Mesoderma/metabolismo , Camundongos , Transdução de Sinais , Tretinoína/metabolismo , Ureter/anormalidades , Ureter/metabolismo , Doenças Ureterais/congênito , Doenças Ureterais/metabolismo
13.
Sci Rep ; 7(1): 14803, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093497

RESUMO

The differentiated cell types of the mature ureter arise from the distal ureteric bud epithelium and its surrounding mesenchyme. Uncommitted epithelial cells first become intermediate cells from which both basal and superficial cells develop. Mesenchymal progenitors give rise to separated layers of adventitial fibrocytes, smooth muscle cells and lamina propria fibrocytes. How progenitor expansion and differentiation are balanced is poorly understood. Here, we addressed the role of retinoic acid (RA) signaling in these programs. Using expression analysis of components and target genes, we show that pathway activity is restricted to the mesenchymal and epithelial progenitor pools. Inhibition of RA signaling in ureter explant cultures resulted in tissue hypoplasia with a relative expansion of smooth muscle cells at the expense of lamina propria fibroblasts in the mesenchyme, and of superficial cells at the expense of intermediate cells in the ureteric epithelium. Administration of RA led to a slight reduction of smooth muscle cells, and almost completely prevented differentiation of intermediate cells into basal and superficial cells. We identified cellular programs and transcriptional targets of RA signaling that may account for this activity. We conclude that RA signaling is required and sufficient to maintain mesenchymal and epithelial progenitors in early ureter development.


Assuntos
Embrião de Mamíferos/embriologia , Células Epiteliais/metabolismo , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Ureter/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/metabolismo
14.
PLoS Genet ; 13(8): e1006951, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28797033

RESUMO

The differentiated cell types of the epithelial and mesenchymal tissue compartments of the mature ureter of the mouse arise in a precise temporal and spatial sequence from uncommitted precursor cells of the distal ureteric bud epithelium and its surrounding mesenchyme. Previous genetic efforts identified a member of the Hedgehog (HH) family of secreted proteins, Sonic hedgehog (SHH) as a crucial epithelial signal for growth and differentiation of the ureteric mesenchyme. Here, we used conditional loss- and gain-of-function experiments of the unique HH signal transducer Smoothened (SMO) to further characterize the cellular functions and unravel the effector genes of HH signaling in ureter development. We showed that HH signaling is not only required for proliferation and SMC differentiation of cells of the inner mesenchymal region but also for survival of cells of the outer mesenchymal region, and for epithelial proliferation and differentiation. We identified the Forkhead transcription factor gene Foxf1 as a target of HH signaling in the ureteric mesenchyme. Expression of a repressor version of FOXF1 in this tissue completely recapitulated the mesenchymal and epithelial proliferation and differentiation defects associated with loss of HH signaling while re-expression of a wildtype version of FOXF1 in the inner mesenchymal layer restored these cellular programs when HH signaling was inhibited. We further showed that expression of Bmp4 in the ureteric mesenchyme depends on HH signaling and Foxf1, and that exogenous BMP4 rescued cell proliferation and epithelial differentiation in ureters with abrogated HH signaling or FOXF1 function. We conclude that SHH uses a FOXF1-BMP4 module to coordinate the cellular programs for ureter elongation and differentiation, and suggest that deregulation of this signaling axis occurs in human congenital anomalies of the kidney and urinary tract (CAKUT).


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Ureter/embriologia , Animais , Proteína Morfogenética Óssea 4/genética , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Proteínas Hedgehog/genética , Processamento de Imagem Assistida por Computador , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Análise em Microsséries , Organogênese/genética , Reprodutibilidade dos Testes , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Ureter/metabolismo
15.
Hum Mol Genet ; 26(18): 3553-3563, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28655168

RESUMO

Heterozygous loss of Bmp4 results both in humans and mice in severe malformation of the urinary tract. These defects have at least partially been attributed to loss of expression of Bmp4 in the ureteric mesenchyme, yet the cellular and molecular function of this signal as well as its effector pathways in this tissue have remained incompletely resolved. Here, we show that mice with a conditional deletion of Bmp4 in the ureteric mesenchyme exhibited hydroureter and hydronephrosis at newborn stages due to functional and physical ureter obstruction. Proliferation in both the mesenchymal and epithelial progenitor pools was severely reduced and smooth muscle cell and urothelial differentiation programs were not activated. Epithelial expression of P-ERK1/2, P-AKT and P-P38, and mesenchymal expression of P-SMAD1/5/9, P-P38 and P-AKT were abrogated. Pharmacological inhibition and activation experiments in ureter cultures defined AKT as the most relevant downstream effector for epithelial and mesenchymal proliferation as well as for epithelial differentiation. Epithelial proliferation and differentiation were also influenced by P-38 and ERK1/2, while SMAD signaling, together with AKT and P-38, were required for smooth muscle cell differentiation. Our analysis suggests that BMP4 is the signal that couples the proliferation and differentiation programs in the epithelial and mesenchymal tissue compartments of the developing ureter by different downstream effectors, most importantly AKT and SMAD.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Ureter/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Diferenciação Celular/genética , Proliferação de Células , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Mesoderma/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Organogênese/genética , Gravidez , Transdução de Sinais/genética , Ureter/embriologia
16.
J Am Soc Nephrol ; 28(8): 2364-2376, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28381549

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of CKD in the first three decades of life. However, for most patients with CAKUT, the causative mutation remains unknown. We identified a kindred with an autosomal dominant form of CAKUT. By whole-exome sequencing, we identified a heterozygous truncating mutation (c.279delG, p.Trp93fs*) of the nuclear receptor interacting protein 1 gene (NRIP1) in all seven affected members. NRIP1 encodes a nuclear receptor transcriptional cofactor that directly interacts with the retinoic acid receptors (RARs) to modulate retinoic acid transcriptional activity. Unlike wild-type NRIP1, the altered NRIP1 protein did not translocate to the nucleus, did not interact with RARα, and failed to inhibit retinoic acid-dependent transcriptional activity upon expression in HEK293 cells. Notably, we also showed that treatment with retinoic acid enhanced NRIP1 binding to RARα RNA in situ hybridization confirmed Nrip1 expression in the developing urogenital system of the mouse. In explant cultures of embryonic kidney rudiments, retinoic acid stimulated Nrip1 expression, whereas a pan-RAR antagonist strongly reduced it. Furthermore, mice heterozygous for a null allele of Nrip1 showed a CAKUT-spectrum phenotype. Finally, expression and knockdown experiments in Xenopus laevis confirmed an evolutionarily conserved role for NRIP1 in renal development. These data indicate that dominant NRIP1 mutations can cause CAKUT by interference with retinoic acid transcriptional signaling, shedding light on the well documented association between abnormal vitamin A levels and renal malformations in humans, and suggest a possible gene-environment pathomechanism in this disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação , Proteínas Nucleares/genética , Transdução de Sinais/genética , Tretinoína/fisiologia , Sistema Urinário/anormalidades , Animais , Camundongos , Proteína 1 de Interação com Receptor Nuclear
17.
Hum Mol Genet ; 26(9): 1716-1731, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334964

RESUMO

Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in children. As CAKUT is a genetically heterogeneous disorder and most cases are genetically unexplained, we aimed to identify new CAKUT causing genes. Using whole-exome sequencing and trio-based de novo analysis, we identified a novel heterozygous de novo frameshift variant in the leukemia inhibitory factor receptor (LIFR) gene causing instability of the mRNA in a patient presenting with bilateral CAKUT and requiring kidney transplantation at one year of age. LIFR encodes a transmembrane receptor utilized by IL-6 family cytokines, mainly by the leukemia inhibitory factor (LIF). Mutational analysis of 121 further patients with severe CAKUT yielded two rare heterozygous LIFR missense variants predicted to be pathogenic in three unrelated patients. LIFR mutants showed decreased half-life and cell membrane localization resulting in reduced LIF-stimulated STAT3 phosphorylation. LIFR showed high expression in human fetal kidney and the human ureter, and was also expressed in the developing murine urogenital system. Lifr knockout mice displayed urinary tract malformations including hydronephrosis, hydroureter, ureter ectopia, and, consistently, reduced ureteral lumen and muscular hypertrophy, similar to the phenotypes observed in patients carrying LIFR variants. Additionally, a form of cryptorchidism was detected in all Lifr-/- mice and the patient carrying the LIFR frameshift mutation. Altogether, we demonstrate heterozygous novel or rare LIFR mutations in 3.3% of CAKUT patients, and provide evidence that Lifr deficiency and deactivating LIFR mutations cause highly similar anomalies of the urogenital tract in mice and humans.


Assuntos
Receptores de OSM-LIF/genética , Receptores de OSM-LIF/metabolismo , Anormalidades Urogenitais/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Análise Mutacional de DNA , Exoma , Feminino , Heterozigoto , Humanos , Lactente , Rim/anormalidades , Rim/patologia , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Análise de Sequência de DNA , Ureter/anormalidades , Ureter/patologia , Sistema Urinário/patologia
18.
J Am Soc Nephrol ; 28(6): 1792-1801, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28028137

RESUMO

The mammalian ureter consists of a mesenchymal wall composed of smooth muscle cells and surrounding fibrocytes of the tunica adventitia and the lamina propria and an inner epithelial lining composed of layers of basal, intermediate, and superficial cells. How these cell types arise from multipotent progenitors is poorly understood. Here, we performed marker analysis, cell proliferation assays, and genetic lineage tracing to define the lineage relations and restrictions of the mesenchymal and epithelial cell types in the developing and mature mouse ureter. At embryonic day (E) 12.5, the mesenchymal precursor pool began to subdivide into an inner and outer compartment that began to express markers of smooth muscle precursors and adventitial fibrocytes, respectively, by E13.5. Smooth muscle precursors further diversified into lamina propria cells directly adjacent to the ureteric epithelium and differentiated smooth muscle cells from E16.5 onwards. Uncommitted epithelial progenitors of the ureter differentiated into intermediate cells at E14.5. After stratification into two layers at E15.5 and three cell layers at E18.5, intermediate cells differentiated into basal cells and superficial cells. In homeostasis, proliferation of all epithelial and mesenchymal cell types remained low but intermediate cells still gave rise to basal cells, whereas basal cells divided only into basal cells. These studies provide a framework to further determine the molecular mechanisms of cell differentiation in the tissues of the developing ureter.


Assuntos
Linhagem da Célula/fisiologia , Músculo Liso/citologia , Ureter/embriologia , Animais , Diferenciação Celular , Células Epiteliais , Mesoderma/citologia , Camundongos , Ureter/citologia
19.
Dev Cell ; 39(2): 239-253, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27720610

RESUMO

Numerous signals drive the proliferative expansion of the distal endoderm and the underlying mesenchyme during lung branching morphogenesis, but little is known about how these signals are integrated. Here, we show by analysis of conditional double mutants that the two T-box transcription factor genes Tbx2 and Tbx3 act together in the lung mesenchyme to maintain branching morphogenesis. Expression of both genes depends on epithelially derived Shh signaling, with additional modulation by Bmp, Wnt, and Tgfß signaling. Genetic rescue experiments reveal that Tbx2 and Tbx3 function downstream of Shh to maintain pro-proliferative mesenchymal Wnt signaling, in part by direct repression of the Wnt antagonists Frzb and Shisa3. In combination with our previous finding that Tbx2 and Tbx3 repress the cell-cycle inhibitors Cdkn1a and Cdkn1b, we conclude that Tbx2 and Tbx3 maintain proliferation of the lung mesenchyme by way of at least two molecular mechanisms: regulating cell-cycle regulation and integrating the activity of multiple signaling pathways.


Assuntos
Proteínas Hedgehog/metabolismo , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Morfogênese , Proteínas com Domínio T/metabolismo , Via de Sinalização Wnt , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Feminino , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Pulmão/citologia , Masculino , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Proteínas Repressoras/metabolismo , Fator de Crescimento Transformador beta/metabolismo
20.
Hum Genet ; 135(1): 69-87, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26572137

RESUMO

Congenital anomalies of the kidneys and urinary tract (CAKUT) are genetically highly heterogeneous leaving most cases unclear after mutational analysis of the around 30 causative genes known so far. Assuming that phenotypes frequently showing dominant inheritance, such as CAKUT, can be caused by de novo mutations, de novo analysis of whole-exome sequencing data was done on two patient-parent-trios to identify novel CAKUT genes. In one case, we detected a heterozygous de novo frameshift variant in TBC1D1 encoding a Rab-GTPase-activating protein regulating glucose transporter GLUT4 translocation. Sequence analysis of 100 further CAKUT cases yielded three novel or rare inherited heterozygous TBC1D1 missense variants predicted to be pathogenic. TBC1D1 mutations affected Ser237-phosphorylation or protein stability and thereby act as hypomorphs. Tbc1d1 showed widespread expression in the developing murine urogenital system. A mild CAKUT spectrum phenotype, including anomalies observed in patients carrying TBC1D1 mutations, was found in kidneys of some Tbc1d1 (-/-) mice. Significantly reduced Glut4 levels were detected in kidneys of Tbc1d1 (-/-) mice and the dysplastic kidney of a TBC1D1 mutation carrier versus controls. TBC1D1 and SLC2A4 encoding GLUT4 were highly expressed in human fetal kidney. The patient with the truncating TBC1D1 mutation showed evidence for insulin resistance. These data demonstrate heterozygous deactivating TBC1D1 mutations in CAKUT patients with a similar renal and ureteral phenotype, and provide evidence that TBC1D1 mutations may contribute to CAKUT pathogenesis, possibly via a role in glucose homeostasis.


Assuntos
Exoma , Proteínas Ativadoras de GTPase/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Feminino , Proteínas Ativadoras de GTPase/química , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Linhagem , Homologia de Sequência de Aminoácidos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...