Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
ACS Appl Mater Interfaces ; 15(26): 31114-31123, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37339239

RESUMO

Hydrogels have been widely used to entrap biomolecules for various biocatalytic reactions. However, solute diffusion in these matrices to initiate such reactions can be a very slow process. Conventional mixing remains a challenge as it can cause irreversible distortion or fragmentation of the hydrogel itself. To overcome the diffusion-limit, a shear-stress-mediated platform named the portable vortex-fluidic device (P-VFD) is developed. P-VFD is a portable platform which consists of two main components, (i) a plasma oxazoline-coated polyvinyl chloride (POx-PVC) film with polyacrylamide and alginate (PAAm/Alg-Ca2+) tough hydrogel covalently bound to its surface and (ii) a reactor tube (L × D: 90 mm × 20 mm) where the aforementioned POx-PVC film could be readily inserted for reactions. Through a spotting machine, the PAAm/Alg-Ca2+ hydrogel can be readily printed on a POx-PVC film in an array pattern and up to 25.4 J/m2 adhesion energy can be achieved. The hydrogel arrays on the film not only offer a strong matrix for entrapping biomolecules such as streptavidin-horseradish peroxidase but are also shear stress-tolerant in the reactor tube, enabling a >6-fold increase in its reaction rate after adding tetramethylbenzidine, relative to incubation. Through using the tough hydrogel and its stably bonded substrate, this portable platform effectively overcomes the diffusion-limit and achieves fast assay detection without causing appreciable hydrogel array deformation or dislocation on the substrate film.

2.
Viruses ; 15(3)2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36992515

RESUMO

The sandwich format immunoassay is generally more sensitive and specific than more common assay formats, including direct, indirect, or competitive. A sandwich assay, however, requires two receptors to bind non-competitively to the target analyte. Typically, pairs of antibodies (Abs) or antibody fragments (Fabs) that are capable of forming a sandwiching with the target are identified through a slow, guess-and-check method with panels of candidate binding partners. Additionally, sandwich assays that are reliant on commercial antibodies can suffer from changes to reagent quality outside the researchers' control. This report presents a reimagined and simplified phage display selection protocol that directly identifies sandwich binding peptides and Fabs. The approach yielded two sandwich pairs, one peptide-peptide and one Fab-peptide sandwich for the cancer and Parkinson's disease biomarker DJ-1. Requiring just a few weeks to identify, the sandwich pairs delivered apparent affinity that is comparable to other commercial peptide and antibody sandwiches. The results reported here could expand the availability of sandwich binding partners for a wide range of clinical biomarker assays.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Ensaio de Imunoadsorção Enzimática/métodos , Bacteriófagos/metabolismo , Anticorpos , Peptídeos/metabolismo , Biomarcadores
3.
J Org Chem ; 88(2): 1215-1218, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35583942

RESUMO

Clean pump oil is critical to the performance and longevity of oil-sealed vacuum pumps. Cold traps charged with cryogens can protect pump oil from solvent contamination but are subject to operator error. Notably, cold traps with evaporated or warmed cryogens do not protect the vacuum pump. Here, we report an open source device to automatically protect oil-sealed vacuum pumps from cold trap warming and facilitate the daily maintenance of cold traps.

4.
Nat Commun ; 13(1): 7282, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435948

RESUMO

Noncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN+) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN+-based reducing power. This is based on an orthogonal, NMN+-dependent glycolytic pathway in Escherichia coli which can be coupled to any reciprocal enzyme to recycle the ensuing reduced NMN+. With a throughput of >106 variants per iteration, the growth selection discovers a Lactobacillus pentosus NADH oxidase variant with ~10-fold increase in NMNH catalytic efficiency and enhanced activity for other NCBs. Molecular modeling and experimental validation suggest that instead of directly contacting NCBs, the mutations optimize the enzyme's global conformational dynamics to resemble the WT with the native cofactor bound. Restoring the enzyme's access to catalytically competent conformation states via deep navigation of protein sequence space with high-throughput evolution provides a universal route to engineer NCB-dependent enzymes.


Assuntos
Mononucleotídeo de Nicotinamida , Oxirredutases , Oxirredutases/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Escherichia coli/metabolismo , Modelos Moleculares , Conformação Molecular
5.
PLoS One ; 17(8): e0272163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001626

RESUMO

A previous report demonstrated the strong association between the presence of antibodies binding to an epitope region from SARS-CoV-2 nucleocapsid, termed Ep9, and COVID-19 disease severity. Patients with anti-Ep9 antibodies (Abs) had hallmarks of antigenic interference (AIN), including early IgG upregulation and cytokine-associated injury. Thus, the immunological memory of a prior infection was hypothesized to drive formation of suboptimal anti-Ep9 Abs in severe COVID-19 infections. This study identifies a putative primary antigen capable of stimulating production of cross-reactive, anti-Ep9 Abs. Binding assays with patient blood samples directly show cross-reactivity between Abs binding to Ep9 and only one bioinformatics-derived, homologous putative antigen, a sequence derived from the neuraminidase protein of H3N2 influenza A virus. This cross-reactive binding is highly influenza strain specific and sensitive to even single amino acid changes in epitope sequence. The neuraminidase protein is not present in the influenza vaccine, and the anti-Ep9 Abs likely resulted from the widespread influenza infection in 2014. Therefore, AIN from a previous infection could underlie some cases of COVID-19 disease severity.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Epitopos , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/prevenção & controle , Neuraminidase , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
6.
Sci Rep ; 12(1): 9956, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705606

RESUMO

The botulinum neurotoxin serotype A (BoNT/A) cuts a single peptide bond in SNAP25, an activity used to treat a wide range of diseases. Reengineering the substrate specificity of BoNT/A's protease domain (LC/A) could expand its therapeutic applications; however, LC/A's extended substrate recognition (≈ 60 residues) challenges conventional approaches. We report a directed evolution method for retargeting LC/A and retaining its exquisite specificity. The resultant eight-mutation LC/A (omLC/A) has improved cleavage specificity and catalytic efficiency (1300- and 120-fold, respectively) for SNAP23 versus SNAP25 compared to a previously reported LC/A variant. Importantly, the BoNT/A holotoxin equipped with omLC/A retains its ability to form full-length holotoxin, infiltrate neurons, and cleave SNAP23. The identification of substrate control loops outside BoNT/A's active site could guide the design of improved BoNT proteases and inhibitors.


Assuntos
Toxinas Botulínicas Tipo A , Clostridium botulinum , Peptídeo Hidrolases , Engenharia de Proteínas , Toxinas Botulínicas Tipo A/química , Catálise , Domínio Catalítico , Clostridium botulinum/enzimologia , Clostridium botulinum/metabolismo , Engenharia de Proteínas/métodos , Especificidade por Substrato
7.
Angew Chem Int Ed Engl ; 61(23): e202202021, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333430

RESUMO

Unlocking the potential of personalized medicine in point-of-care settings requires a new generation of biomarker and proteomic assays. Ideally, assays could inexpensively perform hundreds of quantitative protein measurements in parallel at the bedsides of patients. This goal greatly exceeds current capabilities. Furthermore, biomarker assays are often challenging to translate from benchtop to clinic due to difficulties achieving and assessing the necessary selectivity, sensitivity, and reproducibility. To address these challenges, we developed an efficient (<5 min), robust (comparatively lower CVs), and inexpensive (decreasing reagent use and cost by >70 %) immunoassay method. Specifically, the immunoblot membrane is dotted with the sample and then developed in a vortex fluidic device (VFD) reactor. All assay steps-blocking, binding, and washing-leverage the unique thin-film microfluidics of the VFD. The approach can accelerate direct, indirect, and sandwich immunoblot assays. The applications demonstrated include assays relevant to both the laboratory and the clinic.


Assuntos
Microfluídica , Proteômica , Aceleração , Humanos , Imunoensaio , Reprodutibilidade dos Testes
8.
Sci Adv ; 8(10): eabl3522, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275726

RESUMO

Taq DNA polymerase functions at elevated temperatures with fast conformational dynamics-regimes previously inaccessible to mechanistic, single-molecule studies. Here, single-walled carbon nanotube transistors recorded the motions of Taq molecules processing matched or mismatched template-deoxynucleotide triphosphate pairs from 22° to 85°C. By using four enzyme orientations, the whole-enzyme closures of nucleotide incorporations were distinguished from more rapid, 20-µs closures of Taq's fingers domain testing complementarity and orientation. On average, one transient closure was observed for every nucleotide binding event; even complementary substrate pairs averaged five transient closures between each catalytic incorporation at 72°C. The rate and duration of the transient closures and the catalytic events had almost no temperature dependence, leaving all of Taq's temperature sensitivity to its rate-determining open state.


Assuntos
Replicação do DNA , Nucleotídeos , Catálise , Cinética , Nucleotídeos/metabolismo , Taq Polimerase/química , Taq Polimerase/genética , Taq Polimerase/metabolismo
9.
Cell Chem Biol ; 29(2): 177-190, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921772

RESUMO

Proteases cut with enviable precision and regulate diverse molecular events in biology. Such qualities drive a seemingly inexhaustible appetite for proteases with new activities and capabilities. Comprising 25% of the total industrial enzyme market, proteases appear in consumer goods, such as detergents, textile processing, and numerous foods; additionally, proteases include 25 US Food and Drug Administration-approved medicines and various research tools. Recent advances in protease engineering strategies address target specificity, catalytic efficiency, and stability. This guide to protease engineering surveys best practices and emerging strategies. We further highlight gaps and flexibilities inherent to each system that suggest opportunities for new technology development along with engineered proteases to solve challenges in proteomics, protein sequencing, and synthetic gene circuits.


Assuntos
Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Engenharia de Proteínas , Peptídeo Hidrolases/genética
10.
Anal Chem ; 93(32): 11259-11267, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34347442

RESUMO

The Virus BioResistor (VBR) is a biosensor capable of rapid and sensitive detection of small protein disease markers using a simple dip-and-read modality. For example, the bladder cancer-associated protein DJ-1 (22 kDa) can be detected in human urine within 1.0 min with a limit of detection (LOD) of 10 pM. The VBR uses engineered virus particles as receptors to recognize and selectively bind the protein of interest. These virus particles are entrained in a conductive poly(3,4-ethylenedioxythiophene) or PEDOT channel. The electrical impedance of the channel increases when the target protein is bound by the virus particles. But VBRs exhibit a sensitivity that is inversely related to the molecular weight of the protein target. Thus, large proteins, such as IgG antibodies (150 kDa), can be undetectable even at high concentrations. We demonstrate that the electrochemical overoxidation of the VBR's PEDOT channel increases its electrical impedance, conferring enhanced sensitivity for both small and large proteins. Overoxidation makes possible the detection of two antibodies, undetectable at a normal VBR, with a limit of detection of 40 ng/mL (250 pM), and a dynamic range for quantitation extending to 600 ng/mL.


Assuntos
Técnicas Biossensoriais , Compostos Bicíclicos Heterocíclicos com Pontes , Humanos , Imunoglobulina G , Limite de Detecção , Polímeros
11.
bioRxiv ; 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34127968

RESUMO

A previous report demonstrated the strong association between the presence of antibodies binding to an epitope region from SARS-CoV-2 nucleocapsid, termed Ep9, and COVID-19 disease severity. Patients with anti-Ep9 antibodies (Abs) had hallmarks of antigenic imprinting (AIM), including early IgG upregulation and cytokine-associated injury. Thus, the immunological memory of a previous infection was hypothesized to drive formation of suboptimal anti-Ep9 Abs in severe COVID-19 infections. This study identifies a putative primary antigen capable of stimulating production of cross-reactive, anti-Ep9 Abs. Binding assays with patient blood samples directly show cross-reactivity between Abs binding to Ep9 and only one bioinformatics-derived, homologous potential antigen, a sequence derived from the neuraminidase protein of H3N2 Influenza A virus. This cross-reactive binding is highly influenza strain specific and sensitive to even single amino acid changes in epitope sequence. The neuraminidase protein is not present in the influenza vaccine, and the anti-Ep9 Abs likely resulted from the widespread influenza infection in 2014. Therefore, AIM from a previous infection could underlie some cases of COVID-19 disease severity. IMPORTANCE: Infections with SARS-COV-2 result in diverse disease outcomes, ranging from asymptomatic to fatal. The mechanisms underlying different disease outcomes remain largely unexplained. Previously, our laboratory identified a strong association between the presence of an antibody and increased disease severity in a subset of COVID-19 patients. Here, we report that this severity-associated antibody cross-reacts with viral proteins from an influenza A viral strain from 2014. Therefore, we speculate that antibodies generated against previous infections, like the 2014 influenza A, play a significant role in directing some peoples’ immune responses against SARS-COV-2. Such understanding of the sources and drivers of COVID-19 disease severity can help early identification and pre-emptive treatment.

12.
mSphere ; 6(2)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910993

RESUMO

Effective methods for predicting COVID-19 disease trajectories are urgently needed. Here, enzyme-linked immunosorbent assay (ELISA) and coronavirus antigen microarray (COVAM) analysis mapped antibody epitopes in the plasma of COVID-19 patients (n = 86) experiencing a wide range of disease states. The experiments identified antibodies to a 21-residue epitope from nucleocapsid (termed Ep9) associated with severe disease, including admission to the intensive care unit (ICU), requirement for ventilators, or death. Importantly, anti-Ep9 antibodies can be detected within 6 days post-symptom onset and sometimes within 1 day. Furthermore, anti-Ep9 antibodies correlate with various comorbidities and hallmarks of immune hyperactivity. We introduce a simple-to-calculate, disease risk factor score to quantitate each patient's comorbidities and age. For patients with anti-Ep9 antibodies, scores above 3.0 predict more severe disease outcomes with a 13.42 likelihood ratio (96.7% specificity). The results lay the groundwork for a new type of COVID-19 prognostic to allow early identification and triage of high-risk patients. Such information could guide more effective therapeutic intervention.IMPORTANCE The COVID-19 pandemic has resulted in over two million deaths worldwide. Despite efforts to fight the virus, the disease continues to overwhelm hospitals with severely ill patients. Diagnosis of COVID-19 is readily accomplished through a multitude of reliable testing platforms; however, prognostic prediction remains elusive. To this end, we identified a short epitope from the SARS-CoV-2 nucleocapsid protein and also a disease risk factor score based upon comorbidities and age. The presence of antibodies specifically binding to this epitope plus a score cutoff can predict severe COVID-19 outcomes with 96.7% specificity.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , COVID-19/patologia , Técnicas de Visualização da Superfície Celular , Ensaio de Imunoadsorção Enzimática , Epitopos/sangue , Epitopos/imunologia , Humanos , Nucleocapsídeo/imunologia , Fosfoproteínas/imunologia , Prognóstico , Fatores de Risco
13.
ACS Appl Bio Mater ; 4(3): 2704-2712, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014309

RESUMO

Peptide-polymer complementary pairs can provide useful tools for isolating, organizing, and separating biomacromolecules. We describe a procedure for selecting a high affinity complementary peptide-polymer nanoparticle (NP) pair using phage display. A hydrogel copolymer nanoparticle containing a statistical distribution of negatively charged and hydrophobic groups was used to select a peptide sequence from a phage displayed library of >1010 peptides. The NP has low nanomolar affinity for the selected cyclic peptide and exhibited low affinity for a panel of diverse proteins and peptide variants. Affinity arises from the complementary physiochemical properties of both NP and peptide as well as the specific peptide sequence. Comparison of linear and cyclic variants of the peptide established that peptide structure also contributes to affinity. These findings offer a general method for identifying polymer-peptide complementary pairs. Significantly, precise polymer sequences (proteins) are not a requirement, a low information statistical copolymer can be used to select for a specific peptide sequence with affinity and selectivity comparable to that of an antibody. The data also provides evidence for the physiochemical and structural contributions to binding. The results confirm the utility of abiotic, statistical, synthetic copolymers as selective, high affinity peptide affinity reagents.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Peptídeos/química , Polímeros/química , Teste de Materiais , Tamanho da Partícula
14.
bioRxiv ; 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33083803

RESUMO

Effective methods for predicting COVID-19 disease trajectories are urgently needed. Here, ELISA and coronavirus antigen microarray (COVAM) analysis mapped antibody epitopes in the plasma of COVID-19 patients (n = 86) experiencing a wide-range of disease states. The experiments identified antibodies to a 21-residue epitope from nucleocapsid (termed Ep9) associated with severe disease, including admission to the ICU, requirement for ventilators, or death. Importantly, anti-Ep9 antibodies can be detected within six days post-symptom onset and sometimes within one day. Furthermore, anti-Ep9 antibodies correlate with various comorbidities and hallmarks of immune hyperactivity. We introduce a simple-to-calculate, disease risk factor score to quantitate each patients comorbidities and age. For patients with anti-Ep9 antibodies, scores above 3.0 predict more severe disease outcomes with a 13.42 Likelihood Ratio (96.7% specificity). The results lay the groundwork for a new type of COVID-19 prognostic to allow early identification and triage of high-risk patients. Such information could guide more effective therapeutic intervention.

15.
ACS Appl Mater Interfaces ; 12(46): 51999-52007, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33151682

RESUMO

The fabrication of hybrid protein-Cu3(PO4)2 nanoflowers (NFs) via an intermediate toroidal structure is dramatically accelerated under shear using a vortex fluidic device (VFD), which possesses a rapidly rotating angled tube. As-prepared laccase NFs (LNFs) exhibit ≈1.8-fold increase in catalytic activity compared to free laccase under diffusion control, which is further enhanced by ≈ 2.9-fold for the catalysis under shear in the VFD. A new LNF immobilization platform, LNF@silica incorporated in a VFD tube, was subsequently developed by mixing the LNFs for 15 min with silica hydrogel resulting in gelation along the VFD tube surface. The resulting LNFs@silica coating is highly stable and reusable, which allows a dramatic 16-fold enhancement in catalytic rates relative to LNF@silica inside glass vials. Ultraviolet-visible spectroscopy-based real-time monitoring within the LNFs@silica-coated tube reveals good stability of the coating in continuous flow processing. The results demonstrate the utility of the VFD microfluidic platform, further highlighting its ability to control chemical and enzymatic processes.


Assuntos
Técnicas Biossensoriais/métodos , Hidrogéis/química , Lacase/metabolismo , Microfluídica , Dióxido de Silício/química , Animais , Técnicas Biossensoriais/instrumentação , Bovinos , Nanoestruturas/química , Soroalbumina Bovina/química , Espectrofotometria
16.
Acc Chem Res ; 53(10): 2384-2394, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33001632

RESUMO

The 2018 Nobel Prize in Chemistry recognized in vitro evolution, including the development by George Smith and Gregory Winter of phage display, a technology for engineering the functional capabilities of antibodies into viruses. Such bacteriophages solve inherent problems with antibodies, including their high cost, thermal lability, and propensity to aggregate. While phage display accelerated the discovery of peptide and protein motifs for recognition and binding to proteins in a variety of applications, the development of biosensors using intact phage particles was largely unexplored in the early 2000s. Virus particles, 16.5 MDa in size and assembled from thousands of proteins, could not simply be substituted for antibodies in any existing biosensor architectures.Incorporating viruses into biosensors required us to answer several questions: What process will allow the incorporation of viruses into a functional bioaffinity layer? How can the binding of a protein disease marker to a virus particle be electrically transduced to produce a signal? Will the variable salt concentration of a bodily fluid interfere with electrical transduction? A completely new biosensor architecture and a new scheme for electrical transduction of the binding of molecules to viruses were required.This Account describes the highlights of a research program launched in 2006 that answered these questions. These efforts culminated in 2018 in the invention of a biosensor specifically designed to interface with virus particles: the Virus BioResistor (VBR). The VBR is a resistor consisting of a conductive polymer matrix in which M13 virus particles are entrained. The electrical impedance of this resistor, measured across 4 orders of magnitude in frequency, simultaneously measures the concentration of a target protein and the ionic conductivity of the medium in which the resistor is immersed. Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise ratio (S/N > 100) and excellent sensor-to-sensor reproducibility. Using this new device, we have measured the urinary bladder cancer biomarker nucleic acid deglycase (DJ-1) in urine samples. This optimized VBR is characterized by extremely low sensor-to-sensor coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a limit of quantitation of 30 pM, encompassing 4 orders of magnitude in concentration.


Assuntos
Bacteriófago M13/isolamento & purificação , Técnicas Biossensoriais/métodos , Anticorpos/imunologia , Bacteriófago M13/química , Bacteriófago M13/imunologia , Bacteriófago M13/metabolismo , Biomarcadores Tumorais/urina , Técnicas Biossensoriais/instrumentação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Eletrodos , Humanos , Limite de Detecção , Nanofios/química , Neoplasias/diagnóstico , Biblioteca de Peptídeos , Polímeros/química , Proteína Desglicase DJ-1/urina , Técnicas de Microbalança de Cristal de Quartzo , Reprodutibilidade dos Testes , Razão Sinal-Ruído
18.
J Org Chem ; 85(13): 8480-8488, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32502347

RESUMO

In continuous flow biocatalysis, chemical transformations can occur under milder, greener, more scalable, and safer conditions than conventional organic synthesis. However, the method typically involves extensive screening to optimize each enzyme's immobilization on its solid support material. The task of weighing solids for large numbers of experiments poses a bottleneck for screening enzyme immobilization conditions. For example, screening conditions often require multiple replicates exploring different support chemistries, buffer compositions, and temperatures. Thus, we report 3D-printed labware designed to measure and handle solids in multichannel format and expedite screening of enzyme immobilization conditions. To demonstrate the generality of these advances, alkaline phosphatase, glucose dehydrogenase, and laccase were screened for immobilization efficiency on seven resins. The results illustrate the requirements for optimization of each enzyme's loading and resin choice for optimal catalytic performance. Here, 3D-printed labware can decrease the requirements for an experimentalist's time by >95%. The approach to rapid optimization of enzyme immobilization is applicable to any enzyme and many solid support resins. Furthermore, the reported devices deliver precise and accurate aliquots of essentially any granular solid material.


Assuntos
Enzimas Imobilizadas , Lacase , Biocatálise , Catálise , Lacase/metabolismo , Impressão Tridimensional
19.
Anal Chem ; 92(11): 7683-7689, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32352281

RESUMO

Molecular sensors from protein engineering offer new methods to sensitively bind to and detect target analytes for a wide range of applications. For example, these sensors can be integrated into probes for implantation, and then yield new and valuable physiological information. Here, a new Förster resonance energy transfer (FRET)-based sensor is integrated with an optical fiber to yield a device measuring free Ca2+. This membrane encapsulated optical fiber (MEOF) device is composed of a sensor matrix that fills poly(tetrafluoroethylene) (PTFE) with an engineered troponin C (TnC) protein fused to a pair of FRET fluorophores. The FRET efficiency is modulated upon Ca2+ ion binding. The probe further comprises a second, size-excluding filter membrane that is synthesized by filling the pores of a PTFE matrix with a poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogel; this design ensures protection from circulating proteases and the foreign body response. The two membranes are stacked and placed on a thin, silica optical fiber for optical excitation and detection. Results show the biosensor responds to changes in Ca2+ concentration within minutes with a sensitivity ranging from 0.01 to 10 mM Ca2+, allowing discrimination of hyper- and hypocalcemia. Furthermore, the system reversibly binds Ca2+ to allow continuous monitoring. This work paves the way for the use of engineered structure-switching proteins for continuous optical monitoring in a large number of applications.


Assuntos
Cálcio/análise , Transferência Ressonante de Energia de Fluorescência , Troponina C/metabolismo , Animais , Batracoidiformes/metabolismo , Cálcio/metabolismo , Processos Fotoquímicos , Proteólise , Troponina C/química
20.
Bioconjug Chem ; 31(5): 1449-1462, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32302483

RESUMO

Advances in bioconjugation, the ability to link biomolecules to each other, small molecules, surfaces, and more, can spur the development of advanced materials and therapeutics. We have discovered that pyrocinchonimide, the dimethylated analogue of maleimide, undergoes a surprising transformation with biomolecules. The reaction targets amines and involves an imide transfer, which has not been previously reported for bioconjugation purposes. Despite their similarity to maleimides, pyrocinchonimides do not react with free thiols. Though both lysine residues and the N-termini of proteins can receive the transferred imide, the reaction also exhibits a marked preference for certain amines that cannot solely be ascribed to solvent accessibility. This property is peculiar among amine-targeting reactions and can reduce combinatorial diversity when many available reactive amines are available, such as in the formation of antibody-drug conjugates. Unlike amides, the modification undergoes very slow reversion under high pH conditions. The reaction offers a thermodynamically controlled route to single or multiple modifications of proteins for a wide range of applications.


Assuntos
Aminas/química , Imidas/química , Proteínas/química , Concentração de Íons de Hidrogênio , Cinética , Lisina/química , Solventes/química , Compostos de Sulfidrila/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...