Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Pharmacol ; 79(2): 229-234, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35485584

RESUMO

ABSTRACT: Imidazoline receptor antisera selected/Nischarin was proposed several years ago as the functional entity for the I1 medullary receptors (I1Rs) targeted, together with α2-adrenoceptors, by the centrally acting antihypertensive drugs, such as clonidine. The objective of this study was to test this assumption using a pyrroline analog of clonidine, LNP599, which, unlike clonidine and related compounds, displays high selectivity toward I1Rs. Cardiovascular effects of LNP599 (3 mg/kg intravenous) were evaluated in anesthetized, artificially ventilated nischarin mutant rats expressing a truncated form of nischarin lacking the putative imidazoline binding site. LNP599 induced a rapid and pronounced fall in arterial blood pressure in wild-type animals (-42.7% ± 11.0% after 15 minutes), associated with a ≈30% heart rate reduction. Similar effects were obtained in homozygous and heterozygous nischarin mutant rats. The observation that the hypotensive response to I1R activation is not affected by the absence of the putative imidazoline binding site on nischarin strongly suggests that nischarin cannot be regarded as the functional I1R. Carbohydrate regulation was improved in nischarin mutant rats, further supporting the conclusion that nischarin and I1R are 2 distinct molecular entities.


Assuntos
Anti-Hipertensivos , Clonidina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Clonidina/farmacologia , Receptores de Imidazolinas , Ratos
2.
Int J Obes (Lond) ; 45(6): 1229-1239, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33654274

RESUMO

BACKGROUND/OBJECTIVES: Overweight and obesity are undoubtable risk factors for type 2 diabetes and cardiovascular diseases and significantly contribute to the global morbi-mortality. We previoulsy reported that LNP599, a pharmacological imidazoline-like activator of hepatic AMPK/adiponectin signaling, protects against the development of adiposity and obesity and the associated cardio-metabolic disorders, suggesting that it may be a suitable drug candidate for a therapeutic approach targeting the development of obesity at very early stages. The objective of the present study was to evaluate the metabolic effects of LNP599 in a model of diet-induced overweight and metabolic disorders in a nonhuman primate, the common marmoset (Callithrix jacchus), and more particularly to establish the impact of the compound on cholesterol homeostasis, i.e., HDL and LDL/VLDL lipoproteins. METHODS: Marmosets were fed normal (NC) or hypercaloric (HC) chow during 16 weeks. Diet-induced changes in body weight and metabolism were assessed. Effects of LNP599 were evaluated in a subset of HC animals (HC-LNP) receiving the compound at a daily dose of 10 mg/kg over the 16 weeks. RESULTS: HC-feeding induced significant overweight associated with a marked dyslipidemia (hypertriglyceridemia, hypercholesterolemia, and reduced HDL over LDL/VLDL cholesterol ratio). LNP599 blunted the diet-induced body weight gain and largely protected against the development of hypertriglyceridemia. Total cholesterol was unchanged but the ratio of HDL over LDL/VLDL cholesterol was more than doubled. CONCLUSIONS: The profile of metabolic troubles obtained upon enriched diet mimicked the disorders associated with spontaneous obesity in marmosets. HC marmosets represent an experimental model of high clinical relevance to study the pathophysiology of obesity and related dyslipidemia and to evaluate the effects of emerging therapies targeting these disorders. Our data confirm the preventing effects of LNP599 in a nonhuman primate model and demonstrate for the first time the high potency of this drug in promoting HDL-cholesterol.


Assuntos
Compostos de Anilina/farmacologia , Peso Corporal/efeitos dos fármacos , Doenças Metabólicas , Obesidade , Substâncias Protetoras/farmacologia , Pirróis/farmacologia , Animais , Callithrix , Modelos Animais de Doenças , Imidazolinas , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Obesidade/complicações , Obesidade/metabolismo
3.
J Nanobiotechnology ; 19(1): 5, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407567

RESUMO

BACKGROUND: A positive surface charge has been largely associated with nanoparticle (NP) toxicity. However, by screening a carbon NP library in macrophages, we found that a cationic charge does not systematically translate into toxicity. To get deeper insight into this, we carried out a comprehensive study on 5 cationic carbon NPs (NP2 to NP6) exhibiting a similar zeta (ζ) potential value (from + 20.6 to + 26.9 mV) but displaying an increasing surface charge density (electrokinetic charge, Qek from 0.23 to 4.39 µmol/g). An anionic and non-cytotoxic NP (NP1, ζ-potential = - 38.5 mV) was used as control. RESULTS: The 5 cationic NPs induced high (NP6 and NP5, Qek of 2.95 and 4.39 µmol/g, respectively), little (NP3 and NP4, Qek of 0.78 and 1.35 µmol/g, respectively) or no (NP2, Qek of 0.23 µmol/g) viability loss in THP-1-derived macrophages exposed for 24 h to escalating NP dose (3 to 200 µg/mL). A similar toxicity trend was observed in airway epithelial cells (A549 and Calu-3), with less viability loss than in THP-1 cells. NP3, NP5 and NP6 were taken up by THP-1 cells at 4 h, whereas NP1, NP2 and NP4 were not. Among the 6 NPs, only NP5 and NP6 with the highest surface charge density induced significant oxidative stress, IL-8 release, mitochondrial dysfunction and loss in lysosomal integrity in THP-1 cells. As well, in mice, NP5 and NP6 only induced airway inflammation. NP5 also increased allergen-induced immune response, airway inflammation and mucus production. CONCLUSIONS: Thus, this study clearly reveals that the surface charge density of a cationic carbon NP rather than the absolute value of its ζ-potential is a relevant descriptor of its in vitro and in vivo toxicity.


Assuntos
Carbono/toxicidade , Cátions/toxicidade , Nanopartículas/toxicidade , Células A549 , Animais , Asma/patologia , Sobrevivência Celular , Citocinas , Modelos Animais de Doenças , Células Epiteliais , Humanos , Inflamação , Pulmão , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Estresse Oxidativo , Células THP-1
4.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450894

RESUMO

With the growth of nanotechnologies, concerns raised regarding the potential adverse effects of nanoparticles (NPs), especially on the respiratory tract. Adverse outcome pathways (AOP) have become recently the subject of intensive studies in order to get a better understanding of the mechanisms of NP toxicity, and hence hopefully predict the health risks associated with NP exposure. Herein, we propose a putative AOP for the lung toxicity of NPs using emerging nanomaterials called carbon dots (CDs), and in vivo and in vitro experimental approaches. We first investigated the effect of a single administration of CDs on mouse airways. We showed that CDs induce an acute lung inflammation and identified airway macrophages as target cells of CDs. Then, we studied the cellular responses induced by CDs in an in vitro model of macrophages. We observed that CDs are internalized by these cells (molecular initial event) and induce a series of key events, including loss of lysosomal integrity and mitochondrial disruption (organelle responses), as well as oxidative stress, inflammasome activation, inflammatory cytokine upregulation and macrophage death (cellular responses). All these effects triggering lung inflammation as tissular response may lead to acute lung injury.

5.
Int J Obes (Lond) ; 43(11): 2163-2175, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30926950

RESUMO

BACKGROUND/OBJECTIVES: We previously observed that selective agonists of the sympatho-inhibitory I1 imidazoline receptors (LNP ligands) have favorable effects on several cardiovascular and metabolic disorders defining the metabolic syndrome, including body weight. The objectives of this study were to explore the effects of LNPs on adiposity and the mechanisms involved, and to evaluate their impact on metabolic homeostasis. METHODS: Young Zucker fa/fa rats were treated with LNP599 (10 mg/kg/day) for 12 weeks. Effects on body weight, adiposity (regional re-distribution, morphology, and function of adipose tissues), cardiovascular and metabolic homeostasis, and liver function were evaluated. Direct effects on insulin and AMP-activated protein kinase (AMPK) signaling were studied in human hepatoma HepG2 cells. RESULTS: LNP599 treatment limited the age-dependent remodeling and inflammation of subcutaneous, epididymal, and visceral adipose tissues, and prevented total fat deposits and the development of obesity. Body-weight stabilization was not related to reduced food intake but rather to enhanced energy expenditure and thermogenesis. Cardiovascular and metabolic parameters were also improved and were significantly correlated with body weight but not with plasma norepinephrine. Insulin and AMPK signaling were enhanced in hepatic tissues of treated animals, whereas blood markers of hepatic disease and pro-inflammatory cytokine levels were reduced. In cultured HepG2 cells, LNP ligands phosphorylated AMPK and the downstream acetyl-CoA carboxylase and prevented oleic acid-induced intracellular lipid accumulation. They also significantly potentiated insulin-mediated AKT activation and this was independent from AMPK. CONCLUSIONS: Selective I1 imidazoline receptor agonists protect against the development of adiposity and obesity, and the associated cardio-metabolic disorders. Activation of I1 receptors in the liver, leading to stimulation of the cellular energy sensor AMPK and insulin sensitization, and in adipose tissues, leading to improvement of morphology and function, are identified as peripheral mechanisms involved in the beneficial actions of these ligands.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Imidazolinas/farmacologia , Fígado/efeitos dos fármacos , Doenças Metabólicas/prevenção & controle , Obesidade/prevenção & controle , Compostos de Anilina , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Pirróis , Ratos , Ratos Zucker
6.
Am J Physiol Endocrinol Metab ; 309(2): E95-104, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26015433

RESUMO

Altered adiponectin signaling and chronic sympathetic hyperactivity have both been proposed as key factors in the pathogenesis of metabolic syndrome. We recently reported that activation of I1 imidazoline receptors (I1R) improves several symptoms of the metabolic syndrome through sympathoinhibition and increases adiponectin plasma levels in a rat model of metabolic syndrome (Fellmann L, Regnault V, Greney H, et al. J Pharmacol Exp Ther 346: 370-380, 2013). The present study was designed to explore the peripheral component of the beneficial actions of I1R ligands (i.e., sympathoinhibitory independent effects). Aged rats displaying insulin resistance and glucose intolerance were treated with LNP509, a peripherally acting I1R agonist. Glucose tolerance, insulin sensitivity, and adiponectin signaling were assessed at the end of the treatment. Direct actions of the ligand on hepatocyte and adipocyte signaling were also studied. LNP509 reduced the area under the curve of the intravenous glucose tolerance test and enhanced insulin hypoglycemic action and intracellular signaling (Akt phosphorylation), indicating improved glucose tolerance and insulin sensitivity. LNP509 stimulated adiponectin secretion acting at I1R on adipocytes, resulting in increased plasma levels of adiponectin; it also enhanced AMPK phosphorylation in hepatic tissues. Additionally, I1R activation on hepatocytes directly enhanced AMPK phosphorylation. To conclude, I1R ligands can improve insulin sensitivity acting peripherally, independently of sympathoinhibition; stimulation of adiponectin and AMPK pathways at insulin target tissues may account for this effect. This may open a promising new way for the treatment of the metabolic syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Intolerância à Glucose/metabolismo , Imidazolinas/farmacologia , Resistência à Insulina , Animais , Células Cultivadas , Modelos Animais de Doenças , Intolerância à Glucose/patologia , Células Hep G2 , Humanos , Masculino , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...