Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
2.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948109

RESUMO

The innate and adaptive immunities have been documented to participate in the pathogenesis of nephrotoxic acute kidney injury (AKI); however, the mechanisms controlling these processes have yet to be established. In our cisplatin-induced AKI mouse model, we show pathological damage to the kidneys, with the classical markers elevated, consistent with the response to cisplatin treatment. Through assessments of the components of the immune system, both locally and globally, we demonstrate that the immune microenvironment of injured kidneys was associated with an increased infiltration of CD4+ T cells and macrophages concomitant with decreased Treg cell populations. Our cell-based assays and animal studies further show that cisplatin exposure downregulated the protein levels of programmed death-ligand 1 (PD-L1), an immune checkpoint protein, in primary renal proximal tubular epithelial cells, and that these inhibitions were dose-dependent. After orthotopic delivery of PD-L1 gene into the kidneys, cisplatin-exposed mice displayed lower levels of both serum urea nitrogen and creatinine upon PD-L1 expression. Our data suggest a renoprotective effect of the immune checkpoint protein, and thereby provide a novel therapeutic strategy for cisplatin-induced AKI.


Assuntos
Injúria Renal Aguda , Antígeno B7-H1 , Cisplatino/efeitos adversos , Células Epiteliais/metabolismo , Técnicas de Transferência de Genes , Túbulos Renais Proximais/metabolismo , Regulação para Cima , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/terapia , Animais , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Linfócitos T CD4-Positivos/metabolismo , Cisplatino/farmacologia , Modelos Animais de Doenças , Macrófagos/metabolismo , Camundongos
3.
Clin Kidney J ; 14(2): 656-664, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35261758

RESUMO

Objective: Nephrectomy, the standard of care for localized renal cell carcinoma (RCC), may lead to kidney function loss. Our goal was to identify prognostic biomarkers of postoperative renal function using metabolomics. Methods: Metabolomics data from benign kidney parenchyma were collected prospectively from 138 patients with RCC who underwent nephrectomy at a single institution. The primary endpoint was the difference between the postoperative and preoperative estimated glomerular filtration (eGFR) rate divided by the elapsed time (eGFR slope). eGFR slope was calculated ∼2 years post-nephrectomy (GFR1), and at last follow-up (GFR2). A multivariate regularized regression model identified clinical characteristics and abundance of metabolites in baseline benign kidney parenchyma that were significantly associated with eGFR slope. Findings were validated by associating gene expression data with eGFR slope in an independent cohort (n = 58). Results: Data were compiled on 78 patients (median age 62.6 years, 65.4% males). The mean follow-up was 25 ± 3.4 months for GFR1 and 69.5 ± 23.5 months for GFR2 and 17 (22%) and 32 (41%) patients showed eGFR recovery, respectively. Nephrectomy type, blood lipids, gender and 23 metabolites from benign parenchyma were significantly associated with eGFR slope. Some metabolites associated with eGFR slope overlapped with previously reported chronic kidney disease-related processes. Subgroup analysis identified unique 'metabolite signatures' by older age, nephrectomy type and preoperative eGFR. Conclusions: Nephrectomy type, gender, blood lipids and benign parenchyma metabolites at nephrectomy were associated with long-term kidney function. On further study, these metabolites may be useful as potential biomarkers and to identify novel therapeutic targets for malignancy-associated renal disease.

4.
Sports (Basel) ; 8(4)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244618

RESUMO

The purpose of this study was to identify plasma metabolites associated with superior endurance running performance. In 2016, participants at the Western States Endurance Run (WSER), a 100-mile (161-km) foot race, underwent non-targeted metabolomic testing of their post-race plasma. Metabolites associated with faster finish times were identified. Based on these results, runners at the 2017 WSER underwent targeted metabolomics testing, including lipidomics and choline levels. The 2017 participants' plasma metabolites were correlated with finish times and compared with non-athletic controls. In 2016, 427 known molecules were detected using non-targeted metabolomics. Four compounds, all phosphatidylcholines (PCs) were associated with finish time (False Discovery Rate (FDR) < 0.05). All were higher in faster finishers. In 2017, using targeted PC analysis, multiple PCs, measured pre- and post-race, were higher in faster finishers (FDR < 0.05). The majority of PCs was noted to be higher in runners (both pre- and post-race) than in controls (FDR < 0.05). Runners had higher choline levels pre-race compared to controls (p < 0.0001), but choline level did not differ significantly from controls post-race (p = 0.129). Choline levels decreased between the start and the finish of the race (p < 0.0001). Faster finishers had lower choline levels than slower finishers at the race finish (p = 0.028).

5.
Sci Rep ; 10(1): 4203, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144367

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited monogenic disorders, characterized by a progressive decline in kidney function due in part to the formation of fluid-filled cysts. While there is one FDA-approved therapy, it is associated with potential adverse effects, and all other clinical interventions are largely supportive. Insights into the cellular pathways underlying ADPKD have revealed striking similarities to cancer. Moreover, several drugs originally developed for cancer have shown to ameliorate cyst formation and disease progression in animal models of ADPKD. These observations prompted us to develop a high-throughput screening platform of cancer drugs in a quest to repurpose them for ADPKD. We screened ~8,000 compounds, including compounds with oncological annotations, as well as FDA-approved drugs, and identified 155 that reduced the viability of Pkd1-null mouse kidney cells with minimal effects on wild-type cells. We found that 109 of these compounds also reduced in vitro cyst growth of Pkd1-null cells cultured in a 3D matrix. Moreover, the result of the cyst assay identified therapeutically relevant compounds, including agents that interfere with tubulin dynamics and reduced cyst growth without affecting cell viability. Because it is known that several ADPKD therapies with promising outcomes in animal models failed to be translated to human disease, our platform also incorporated the evaluation of compounds in a panel of primary ADPKD and normal human kidney (NHK) epithelial cells. Although we observed differences in compound response amongst ADPKD and NHK cell preparation, we identified 18 compounds that preferentially affected the viability of most ADPKD cells with minimal effects on NHK cells. Our study identifies attractive candidates for future efficacy studies in advanced pre-clinical models of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos/métodos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Rim/citologia , Rim/metabolismo , Camundongos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Pathogens ; 9(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906446

RESUMO

The Aggregatibacter actinomycetemcomitans cytolethal distending toxin (Cdt) induces lymphocytes to undergo cell-cycle arrest and apoptosis; toxicity is dependent upon the active Cdt subunit, CdtB. We now demonstrate that p21CIP1/WAF1 is critical to Cdt-induced apoptosis. Cdt induces increases in the levels of p21CIP1/WAF1 in lymphoid cell lines, Jurkat and MyLa, and in primary human lymphocytes. These increases were dependent upon CdtB's ability to function as a phosphatidylinositol (PI) 3,4,5-triphosphate (PIP3) phosphatase. It is noteworthy that Cdt-induced increases in the levels of p21CIP1/WAF1 were accompanied by a significant decline in the levels of phosphorylated p21CIP1/WAF1. The significance of Cdt-induced p21CIP1/WAF1 increase was assessed by preventing these changes with a two-pronged approach; pre-incubation with the novel p21CIP1/WAF1 inhibitor, UC2288, and development of a p21CIP1/WAF1-deficient cell line (Jurkatp21-) using clustered regularly interspaced short palindromic repeats (CRISPR)/cas9 gene editing. UC2288 blocked toxin-induced increases in p21CIP1/WAF1, and JurkatWT cells treated with this inhibitor exhibited reduced susceptibility to Cdt-induced apoptosis. Likewise, Jurkatp21- cells failed to undergo toxin-induced apoptosis. The linkage between Cdt, p21CIP1/WAF1, and apoptosis was further established by demonstrating that Cdt-induced increases in levels of the pro-apoptotic proteins Bid, Bax, and Bak were dependent upon p21CIP1/WAF1 as these changes were not observed in Jurkatp21- cells. Finally, we determined that the p21CIP1/WAF1 increases were dependent upon toxin-induced increases in the level and activity of the chaperone heat shock protein (HSP) 90. We propose that p21CIP1/WAF1 plays a key pro-apoptotic role in mediating Cdt-induced toxicity.

8.
Kidney360 ; 1(5): 376-388, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35224510

RESUMO

BACKGROUND: Kidney cancer (or renal cell carcinoma, RCC) is the sixth most common malignancy in the United States and is increasing in incidence. Despite new therapies, including targeted therapies and immunotherapies, most RCCs are resistant to treatment. Thus, several laboratories have been evaluating new approaches to therapy, both with single agents as well as combinations. Although we have previously shown efficacy of the dual PAK4/nicotinamide phosphoribosyltransferase (NAMPT) inhibitor KPT-9274, and the immune checkpoint inhibitors (CPI) have shown utility in the clinic, there has been no evaluation of this combination either clinically or in an immunocompetent animal model of kidney cancer. METHODS: In this study, we use the renal cell adenocarcinoma (RENCA) model of spontaneous murine kidney cancer. Male BALB/cJ mice were injected subcutaneously with RENCA cells and, after tumors were palpable, they were treated with KPT-9274 and/or anti-programmed cell death 1 (PDCD1; PD1) antibody for 21 days. Tumors were measured and then removed at animal euthanasia for subsequent studies. RESULTS: We demonstrate a significant decrease in allograft growth with the combination treatment of KPT-9274 and anti-PD1 antibody without significant weight loss by the animals. This is associated with decreased (MOUSE) Naprt expression, indicating dependence of these tumors on NAMPT in parallel to what we have observed in human RCC. Histology of the tumors showed substantial necrosis regardless of treatment condition, and flow cytometry of antibody-stained tumor cells revealed that the enhanced therapeutic effect of KPT-9274 and anti-PD1 antibody was not driven by infiltration of T cells into tumors. CONCLUSIONS: This study highlights the potential of the RENCA model for evaluating immunologic responses to KPT-9274 and checkpoint inhibitor (CPI) and suggests that therapy with this combination could improve efficacy in RCC beyond what is achievable with CPI alone.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Proteínas Reguladoras de Apoptose/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Proliferação de Células , Neoplasias Renais/tratamento farmacológico , Masculino , Camundongos , Nicotinamida Fosforribosiltransferase
9.
Oncogene ; 39(6): 1231-1245, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31616061

RESUMO

Arginine vasopressin (AVP) and its type-2 receptor (V2R) play an essential role in the regulation of salt and water homeostasis by the kidneys. V2R activation also stimulates proliferation of renal cell carcinoma (RCC) cell lines in vitro. The current studies investigated V2R expression and activity in human RCC tumors, and its role in RCC tumor growth. Examination of the cancer genome atlas (TCGA) database, and analysis of human RCC tumor tissue microarrays, cDNA arrays and tumor biopsy samples demonstrated V2R expression and activity in clear cell RCC (ccRCC). In vitro, V2R antagonists OPC31260 and Tolvaptan, or V2R gene silencing reduced wound closure and cell viability of 786-O and Caki-1 human ccRCC cell lines. Similarly in mouse xenograft models, Tolvaptan and OPC31260 decreased RCC tumor growth by reducing cell proliferation and angiogenesis, while increasing apoptosis. In contrast, the V2R agonist dDAVP significantly increased tumor growth. High intracellular cAMP levels and ERK1/2 activation were observed in human ccRCC tumors. In mouse tumors and Caki-1 cells, V2R agonists reduced cAMP and ERK1/2 activation, while dDAVP treatment had the reverse effect. V2R gene silencing in Caki-1 cells also reduced cAMP and ERK1/2 activation. These results provide novel evidence for a pathogenic role of V2R signaling in ccRCC, and suggest that inhibitors of the AVP-V2R pathway, including the FDA-approved drug Tolvaptan, could be utilized as novel ccRCC therapeutics.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Renais/tratamento farmacológico , Receptores de Vasopressinas/química , Tolvaptan/farmacologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos/farmacologia , Apoptose , Biomarcadores Tumorais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Estudos de Casos e Controles , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Nus , Prognóstico , Receptores de Vasopressinas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Artigo em Inglês | MEDLINE | ID: mdl-30701095

RESUMO

Renal cell carcinoma (RCC) has emerged as a metabolic disease characterized by dysregulated expression of metabolic enzymes. Patients with metastatic RCC have an unusually poor prognosis and near-universal resistance to all current therapies. To improve RCC treatment and the survival rate of patients with RCC, there is an urgent need to reveal the mechanisms by which metabolic reprogramming regulates aberrant signaling and oncogenic progression. Through an integrated analysis of RCC metabolic pathways, we showed that methylthioadenosine phosphorylase (MTAP) and its substrate methylthioadenosine (MTA) are dysregulated in aggressive RCC. A decrease in MTAP expression was observed in RCC tissues and correlated with higher tumor grade and shorter overall survival. Genetic manipulation of MTAP demonstrated that MTAP expression inhibits the epithelial-mesenchymal transition, invasion and migration of RCC cells. Interestingly, we found a decrease in the protein methylation level with a concomitant increase in tyrosine phosphorylation after MTAP knockout. A phospho-kinase array screen identified the type 1 insulin-like growth factor-1 receptor (IGF1R) as the candidate with the highest upregulation in tyrosine phosphorylation in response to MTAP loss. We further demonstrated that IGF1R phosphorylation acts upstream of Src and STAT3 signaling in MTAP-knockout RCC cells. IGF1R suppression by a selective inhibitor of IGF1R, linsitinib, impaired the cell migration and invasion capability of MTAP-deleted cells. Surprisingly, an increase in linsitinib-mediated cytotoxicity occurred in RCC cells with MTAP deficiency. Our data suggest that IGF1R signaling is a driver pathway that contributes to the aggressive nature of MTAP-deleted RCC.

11.
BMC Nephrol ; 20(1): 66, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30803434

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease and is characterized by gradual cyst growth and expansion, increase in kidney volume with an ultimate decline in kidney function leading to end stage renal disease (ESRD). Given the decades long period of stable kidney function while cyst growth occurs, it is important to identify those patients who will progress to ESRD. Recent data from our and other laboratories have demonstrated that metabolic reprogramming may play a key role in cystic epithelial proliferation resulting in cyst growth in ADPKD. Height corrected total kidney volume (ht-TKV) accurately reflects cyst burden and predicts future loss of kidney function. We hypothesize that specific plasma metabolites will correlate with eGFR and ht-TKV early in ADPKD, both predictors of disease progression, potentially indicative of early physiologic derangements of renal disease severity. METHODS: To investigate the predictive role of plasma metabolites on eGFR and/or ht-TKV, we used a non-targeted GC-TOF/MS-based metabolomics approach on hypertensive ADPKD patients in the early course of their disease. Patient data was obtained from the HALT-A randomized clinical trial at baseline including estimated glomerular filtration rate (eGFR) and measured ht-TKV. To identify individual metabolites whose intensities are significantly correlated with eGFR and ht-TKV, association analyses were performed using linear regression with each metabolite signal level as the primary predictor variable and baseline eGFR and ht-TKV as the continuous outcomes of interest, while adjusting for covariates. Significance was determined by Storey's false discovery rate (FDR) q-values to correct for multiple testing. RESULTS: Twelve metabolites significantly correlated with eGFR and two triglycerides significantly correlated with baseline ht-TKV at FDR q-value < 0.05. Specific significant metabolites, including pseudo-uridine, indole-3-lactate, uric acid, isothreonic acid, and creatinine, have been previously shown to accumulate in plasma and/or urine in both diabetic and cystic renal diseases with advanced renal insufficiency. CONCLUSIONS: This study identifies metabolic derangements in early ADPKD which may be prognostic for ADPKD disease progression. CLINICAL TRIAL: HALT Progression of Polycystic Kidney Disease (HALT PKD) Study A; Clinical www.clinicaltrials.gov identifier: NCT00283686; first posted January 30, 2006, last update posted March 19, 2015.


Assuntos
Rim , Rim Policístico Autossômico Dominante , Insuficiência Renal , Adulto , Creatinina/sangue , Progressão da Doença , Feminino , Humanos , Indóis/sangue , Rim/metabolismo , Rim/patologia , Testes de Função Renal/métodos , Testes de Função Renal/estatística & dados numéricos , Estudos Longitudinais , Masculino , Tamanho do Órgão , Gravidade do Paciente , Rim Policístico Autossômico Dominante/sangue , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/fisiopatologia , Valor Preditivo dos Testes , Prognóstico , Pseudouridina/sangue , Insuficiência Renal/sangue , Insuficiência Renal/diagnóstico , Insuficiência Renal/etiologia , Ácido Úrico/sangue
12.
Oncotarget ; 9(77): 34567-34581, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30349650

RESUMO

Treatment options for high grade urothelial cancers are limited and have remained largely unchanged for several decades. Selinexor (KPT-330), a first in class small molecule that inhibits the nuclear export protein XPO1, has shown efficacy as a single agent treatment for numerous different malignancies, but its efficacy in limiting bladder malignancies has not been tested. In this study we assessed selinexor-dependent cytotoxicity in several bladder tumor cells and report that selinexor effectively reduced XPO1 expression and limited cell viability in a dose dependent manner. The decrease in cell viability was due to an induction of apoptosis and cell cycle arrest. These results were recapitulated in in vivo studies where selinexor decreased tumor growth. Tumors treated with selinexor expressed lower levels of XPO1, cyclin A, cyclin B, and CDK2 and increased levels of RB and CDK inhibitor p27, a result that is consistent with growth arrest. Cells expressing wildtype RB, a potent tumor suppressor that promotes growth arrest and apoptosis, were most susceptible to selinexor. Cell fractionation and immunofluorescence studies showed that selinexor treatment increased nuclear RB levels and mechanistic studies revealed that RB ablation curtailed the response to the drug. Conversely, limiting CDK4/6 dependent RB phosphorylation by palbociclib was additive with selinexor in reducing bladder tumor cell viability, confirming that RB activity has a role in the response to XPO1 inhibition. These results provide a rationale for XPO1 inhibition as a novel strategy for the treatment of bladder malignancies.

13.
Am J Physiol Renal Physiol ; 315(6): F1855-F1868, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280600

RESUMO

Research into metabolic reprogramming in cancer has become commonplace, yet this area of research has only recently come of age in nephrology. In light of the parallels between cancer and autosomal dominant polycystic kidney disease (ADPKD), the latter is currently being studied as a metabolic disease. In clear cell renal cell carcinoma (RCC), which is now considered a metabolic disease, we and others have shown derangements in the enzyme arginosuccinate synthase 1 (ASS1), resulting in RCC cells becoming auxotrophic for arginine and leading to a new therapeutic paradigm involving reducing extracellular arginine. Based on our earlier finding that glutamine pathways are reprogrammed in ARPKD, and given the connection between arginine and glutamine synthetic pathways via citrulline, we investigated the possibility of arginine reprogramming in ADPKD. We now show that, in a remarkable parallel to RCC, ASS1 expression is reduced in murine and human ADPKD, and arginine depletion results in a dose-dependent compensatory increase in ASS1 levels as well as decreased cystogenesis in vitro and ex vivo with minimal toxicity to normal cells. Nontargeted metabolomics analysis of mouse kidney cell lines grown in arginine-deficient versus arginine-replete media suggests arginine-dependent alterations in the glutamine and proline pathways. Thus, depletion of this conditionally essential amino acid by dietary or pharmacological means, such as with arginine-degrading enzymes, may be a novel treatment for this disease.


Assuntos
Arginina/metabolismo , Proliferação de Células , Metabolismo Energético , Rim/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Animais , Arginina/deficiência , Arginina/farmacologia , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Feminino , Predisposição Genética para Doença , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Metabolômica/métodos , Camundongos Knockout , Fenótipo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Transdução de Sinais , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética
15.
Semin Nephrol ; 38(2): 175-182, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29602399

RESUMO

Kidney cancer, or renal cell carcinoma (RCC), is a disease of increasing incidence that commonly is seen in the general practice of nephrology. Despite this state of affairs, this fascinating and highly morbid disease frequently is under-represented, or even absent, from the curriculum of nephrologists in training and generally is underemphasized in national nephrology meetings, both scientific as well as clinical. Although classic concepts in cancer research in general had led to the concept that cancer is a disease resulting from mutations in the control of growth-regulating pathways, reinforced by the discovery of oncogenes, more contemporary research, particularly in kidney cancer, has uncovered changes in metabolic pathways mediated by those same genes that control tumor energetics and biosynthesis. This adaptation of classic biochemical pathways to the tumor's advantage has been labeled metabolic reprogramming. For example, in the case of kidney cancer there exists a near-universal presence of von Hippel-Lindau tumor suppressor (pVHL) inactivation in the most common form, clear cell RCC (ccRCC), leading to activation of hypoxia-relevant and other metabolic pathways. Studies of this and other pathways in clear cell RCC (ccRCC) have been particularly revealing, leading to the concept that ccRCC can itself be considered a metabolic disease. For this reason, the relatively new method of metabolomics has become a useful technique in the study of ccRCC to tease out those pathways that have been reprogrammed by the tumor to its maximum survival advantage. Furthermore, identification of the nodes of such pathways can lead to novel areas for drug intervention in a disease for which such targets are seriously lacking. Further research and dissemination of these concepts, likely using omics techniques, will lead to clinical trials of therapeutics specifically targeted to tumor metabolism, rather than those generally toxic to all proliferating cells. Such novel agents are highly likely to be more effective than existing drugs and to have far fewer adverse effects. This review provides a general overview of the technique of metabolomics and then discusses how it and other omics techniques have been used to further our understanding of the basic biology of kidney cancer as well as to identify new therapeutic approaches.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Redes e Vias Metabólicas/genética , Metabolômica , Adaptação Fisiológica , Arginina/metabolismo , Ácidos Graxos/metabolismo , Glutamina/metabolismo , Glicólise , Humanos , Lipídeos/biossíntese , Triptofano/metabolismo
17.
Ann Transl Med ; 6(Suppl 2): S103, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30740424
18.
Expert Opin Ther Targets ; 22(1): 9-17, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29207896

RESUMO

INTRODUCTION: Sustained proliferative signaling and de-regulated cellular bioenergetics are two of the chief hallmarks of cancer. Alterations in the Ras pathway and its downstream effectors are among the major drivers for uncontrolled cell growth in many cancers. The GTPases are one of the signaling molecules that activate crucial signal transducing pathways downstream of Ras through several effector proteins. The GTPases (GTP bound) interact with several effectors and modulate a number of different biological pathways including those that regulate cytoskeleton, cellular motility, cytokinesis, proliferation, apoptosis, transcription and nuclear signaling. Similarly, the altered glycolytic pathway, the so-called 'Warburg effect', rewires tumor cell metabolism to support the biosynthetic requirements of uncontrolled proliferation. There exists strong evidence for the critical role of the glycolytic pathway's rate limiting enzymes in promoting immunosuppression. Areas covered: We review the emerging roles of GTPase effector proteins particularly the p21 activated kinase 4 (PAK4) and nicotinamide biosynthetic pathway enzyme nicotinamide phosphoribosyltransferase (NAMPT) as signaling molecules in immune surveillance and the immune response. Expert opinion: In this expert opinion article we highlight the recent information on the role of GTPases and the metabolic enzymes on the immune microenvironment and propose some unique immune therapeutic opportunities.


Assuntos
NAD/metabolismo , Neoplasias/imunologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Imunoterapia/métodos , NAD/imunologia , Neoplasias/terapia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Proteínas rho de Ligação ao GTP/imunologia
20.
Cancer Res ; 77(23): 6746-6758, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021138

RESUMO

Many cancers appear to activate intrinsic antioxidant systems as a means to counteract oxidative stress. Some cancers, such as clear cell renal cell carcinoma (ccRCC), require exogenous glutamine for growth and exhibit reprogrammed glutamine metabolism, at least in part due to the glutathione pathway, an efficient cellular buffering system that counteracts reactive oxygen species and other oxidants. We show here that ccRCC xenograft tumors under the renal capsule exhibit enhanced oxidative stress compared with adjacent normal tissue and the contralateral kidney. Upon glutaminase inhibition with CB-839 or BPTES, the RCC cell lines SN12PM-6-1 (SN12) and 786-O exhibited decreased survival and pronounced apoptosis associated with a decreased GSH/GSSG ratio, augmented nuclear factor erythroid-related factor 2, and increased 8-oxo-7,8-dihydro-2'-deoxyguanosine, a marker of DNA damage. SN12 tumor xenografts showed decreased growth when treated with CB-839. Furthermore, PET imaging confirmed that ccRCC tumors exhibited increased tumoral uptake of 18F-(2S,4R)4-fluoroglutamine compared with the kidney in the orthotopic mouse model. This technique can be utilized to follow changes in ccRCC metabolism in vivo Further development of these paradigms will lead to new treatment options with glutaminase inhibitors and the utility of PET to identify and manage patients with ccRCC who are likely to respond to glutaminase inhibitors in the clinic. Cancer Res; 77(23); 6746-58. ©2017 AACR.


Assuntos
Benzenoacetamidas/farmacologia , Carcinoma de Células Renais/patologia , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Tiadiazóis/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Apoptose/fisiologia , Carcinoma de Células Renais/tratamento farmacológico , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Camundongos , Fator de Transcrição NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...