Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38977300

RESUMO

Activity of central amygdala (CeA) PKCδ expressing neurons has been linked to appetite regulation, anxiety-like behaviors, pain sensitivity, and addiction-related behaviors. Studies of the role that CeA PKCδ+ neurons play in these behaviors have largely been carried out in mice, and genetic tools that would allow selective manipulation of PKCδ+ cells in rats have been lacking. Here, we used a CRISPR/Cas9 strategy to generate a transgenic Prkcd-cre knock-in rat and characterized this model using anatomical, electrophysiological, and behavioral approaches in both sexes. In the CeA, Cre was selectively expressed in PKCδ+ cells. Anterograde projections of PKCδ+ neurons to cortical regions, subcortical regions, several hypothalamic nuclei, the amygdala complex, and midbrain dopaminergic regions were largely consistent with published mouse data. In a behavioral screen, we found no differences between Cre+ rats and Cre- wild-type littermates. Optogenetic stimulation of CeA PKCδ+ neurons in a palatable food intake assay resulted in an increased latency to first feeding and decreased total food intake, once again replicating published mouse findings. Lastly, using a real-time place preference task, we found that stimulation of PKCδ+ neurons promoted aversion, without affecting locomotor activity. Collectively, these findings establish the novel Prkcd-Cre rat line as a valuable tool that complements available mouse lines for investigating the functional role of PKCδ+ neurons.


Assuntos
Proteína Quinase C-delta , Animais , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Ratos , Masculino , Feminino , Ratos Transgênicos , Neurônios/fisiologia , Núcleo Central da Amígdala/fisiologia , Integrases/genética , Optogenética/métodos , Ratos Sprague-Dawley
2.
Sci Rep ; 14(1): 10287, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704454

RESUMO

The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.


Assuntos
Proteínas de Ligação a RNA , Fatores de Transcrição SOXD , Humanos , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Regulação da Expressão Gênica no Desenvolvimento , Eritropoese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células Hep G2 , Células K562 , Regulação Neoplásica da Expressão Gênica , Células Eritroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA