Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(25): e2200198119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704763

RESUMO

Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.


Assuntos
Bactérias , Foraminíferos , Interações entre Hospedeiro e Microrganismos , Bactérias/genética , Bactérias/metabolismo , Desnitrificação/genética , Eucariotos/metabolismo , Foraminíferos/genética , Foraminíferos/metabolismo , Nitratos/metabolismo , Oxigênio/metabolismo
2.
Nat Microbiol ; 7(4): 570-580, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35365792

RESUMO

The photosynthetic picocyanobacteria Prochlorococcus and Synechococcus are models for dissecting how ecological niches are defined by environmental conditions, but how interactions with bacteriophages affect picocyanobacterial biogeography in open ocean biomes has rarely been assessed. We applied single-virus and single-cell infection approaches to quantify cyanophage abundance and infected picocyanobacteria in 87 surface water samples from five transects that traversed approximately 2,200 km in the North Pacific Ocean on three cruises, with a duration of 2-4 weeks, between 2015 and 2017. We detected a 550-km-wide hotspot of cyanophages and virus-infected picocyanobacteria in the transition zone between the North Pacific Subtropical and Subpolar gyres that was present in each transect. Notably, the hotspot occurred at a consistent temperature and displayed distinct cyanophage-lineage composition on all transects. On two of these transects, the levels of infection in the hotspot were estimated to be sufficient to substantially limit the geographical range of Prochlorococcus. Coincident with the detection of high levels of virally infected picocyanobacteria, we measured an increase of 10-100-fold in the Synechococcus populations in samples that are usually dominated by Prochlorococcus. We developed a multiple regression model of cyanophages, temperature and chlorophyll concentrations that inferred that the hotspot extended across the North Pacific Ocean, creating a biological boundary between gyres, with the potential to release organic matter comparable to that of the sevenfold-larger North Pacific Subtropical Gyre. Our results highlight the probable impact of viruses on large-scale phytoplankton biogeography and biogeochemistry in distinct regions of the oceans.


Assuntos
Prochlorococcus , Synechococcus , Vírus , Oceano Pacífico , Água do Mar/microbiologia
3.
FEBS J ; 288(10): 3197-3216, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205554

RESUMO

Polymerizing and filament-forming proteins are instrumental for numerous cellular processes such as cell division and growth. Their function in stabilization and localization of protein complexes and replicons is achieved by a filamentous structure. Known filamentous proteins assemble into homopolymers consisting of single subunits - for example, MreB and FtsZ in bacteria - or heteropolymers that are composed of two subunits, for example, keratin and α/ß tubulin in eukaryotes. Here, we describe two novel coiled-coil-rich proteins (CCRPs) in the filament-forming cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena) that assemble into a heteropolymer and function in the maintenance of the Anabaena multicellular shape (termed trichome). The two CCRPs - Alr4504 and Alr4505 (named ZicK and ZacK) - are strictly interdependent for the assembly of protein filaments in vivo and polymerize nucleotide independently in vitro, similar to known intermediate filament (IF) proteins. A ΔzicKΔzacK double mutant is characterized by a zigzagged cell arrangement and hence a loss of the typical linear Anabaena trichome shape. ZicK and ZacK interact with themselves, with each other, with the elongasome protein MreB, the septal junction protein SepJ and the divisome associate septal protein SepI. Our results suggest that ZicK and ZacK function in cooperation with SepJ and MreB to stabilize the Anabaena trichome and are likely essential for the manifestation of the multicellular shape in Anabaena. Our study reveals the presence of filament-forming IF-like proteins whose function is achieved through the formation of heteropolymers in cyanobacteria.


Assuntos
Anabaena/genética , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Regulação Bacteriana da Expressão Gênica , Tricomas/genética , Anabaena/metabolismo , Anabaena/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Divisão Celular , Clonagem Molecular , Sequência Conservada , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Polimerização , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tricomas/metabolismo , Tricomas/ultraestrutura
4.
FEBS Open Bio ; 10(12): 2510-2531, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33112491

RESUMO

Multiseriate and true-branching cyanobacteria are at the peak of prokaryotic morphological complexity. However, little is known about the mechanisms governing multiplanar cell division and morphogenesis. Here, we study the function of the prokaryotic cytoskeletal proteins, MreB and FtsZ in Fischerella muscicola PCC 7414 and Chlorogloeopsis fritschii PCC 6912. Vancomycin and HADA labeling revealed a mixed apical, septal, and lateral trichome growth mode in F. muscicola, whereas C. fritschii exhibits septal growth. In all morphotypes from both species, MreB forms either linear filaments or filamentous strings and can interact with FtsZ. Furthermore, multiplanar cell division in F. muscicola likely depends on FtsZ dosage. Our results lay the groundwork for future studies on cytoskeletal proteins in morphologically complex cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/química , Proteínas do Citoesqueleto/metabolismo , Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química
5.
Sci Rep ; 10(1): 1894, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024928

RESUMO

Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel filament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative filament-forming proteins, we observed a higher proportion of CCRPs in filamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identified nine protein families with putative intermediate filament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed filaments in vivo in several organisms. Additionally, we identified a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into filaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form filaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into filaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic filament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity.


Assuntos
Anabaena/citologia , Proteínas de Bactérias/metabolismo , Cianobactérias/citologia , Proteínas do Citoesqueleto/metabolismo , Synechococcus/citologia , Motivos de Aminoácidos/genética , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cianobactérias/genética , Cianobactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/isolamento & purificação , Citoesqueleto/metabolismo , Genes Bacterianos/genética , Mutação , Conformação Proteica em alfa-Hélice/genética , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(8): 2860-2865, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30728294

RESUMO

Benthic foraminifera populate a diverse range of marine habitats. Their ability to use alternative electron acceptors-nitrate (NO3-) or oxygen (O2)-makes them important mediators of benthic nitrogen cycling. Nevertheless, the metabolic scaling of the two alternative respiration pathways and the environmental determinants of foraminiferal denitrification rates are yet unknown. We measured denitrification and O2 respiration rates for 10 benthic foraminifer species sampled in the Peruvian oxygen minimum zone (OMZ). Denitrification and O2 respiration rates significantly scale sublinearly with the cell volume. The scaling is lower for O2 respiration than for denitrification, indicating that NO3- metabolism during denitrification is more efficient than O2 metabolism during aerobic respiration in foraminifera from the Peruvian OMZ. The negative correlation of the O2 respiration rate with the surface/volume ratio is steeper than for the denitrification rate. This is likely explained by the presence of an intracellular NO3- storage in denitrifying foraminifera. Furthermore, we observe an increasing mean cell volume of the Peruvian foraminifera, under higher NO3- availability. This suggests that the cell size of denitrifying foraminifera is not limited by O2 but rather by NO3- availability. Based on our findings, we develop a mathematical formulation of foraminiferal cell volume as a predictor of respiration and denitrification rates, which can further constrain foraminiferal biogeochemical cycling in biogeochemical models. Our findings show that NO3- is the preferred electron acceptor in foraminifera from the OMZ, where the foraminiferal contribution to denitrification is governed by the ratio between NO3- and O2.

7.
Curr Biol ; 28(16): 2536-2543.e5, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30078568

RESUMO

Benthic foraminifera are unicellular eukaryotes inhabiting sediments of aquatic environments. Several species were shown to store and use nitrate for complete denitrification, a unique energy metabolism among eukaryotes. The population of benthic foraminifera reaches high densities in oxygen-depleted marine habitats, where they play a key role in the marine nitrogen cycle. However, the mechanisms of denitrification in foraminifera are still unknown, and the possibility of a contribution of associated bacteria is debated. Here, we present evidence for a novel eukaryotic denitrification pathway that is encoded in foraminiferal genomes. Large-scale genome and transcriptomes analyses reveal the presence of a denitrification pathway in foraminifera species of the genus Globobulimina. This includes the enzymes nitrite reductase (NirK) and nitric oxide reductase (Nor) as well as a wide range of nitrate transporters (Nrt). A phylogenetic reconstruction of the enzymes' evolutionary history uncovers evidence for an ancient acquisition of the foraminiferal denitrification pathway from prokaryotes. We propose a model for denitrification in foraminifera, where a common electron transport chain is used for anaerobic and aerobic respiration. The evolution of hybrid respiration in foraminifera likely contributed to their ecological success, which is well documented in palaeontological records since the Cambrian period.


Assuntos
Desnitrificação/genética , Foraminíferos/genética , Foraminíferos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Foraminíferos/enzimologia , Genoma de Protozoário , Transportadores de Nitrato , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Proteínas de Protozoários/metabolismo
8.
Genome Biol Evol ; 9(1): 241-252, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082600

RESUMO

Chaperonins promote protein folding and are known to play a role in the maintenance of cellular stability under stress conditions. The group I bacterial chaperonin complex comprises GroEL, that forms a barrel-like oligomer, and GroES that forms the lid. In most eubacteria the GroES/GroEL chaperonin is encoded by a single-copy bicistronic operon, whereas in cyanobacteria up to three groES/groEL paralogs have been documented. Here we study the evolution and functional diversification of chaperonin paralogs in the heterocystous, multi-seriate filament forming cyanobacterium Chlorogloeopsis fritschii PCC 6912. The genome of C. fritschii encodes two groES/groEL operons (groESL1, groESL1.2) and a monocistronic groEL gene (groEL2). A phylogenetic reconstruction reveals that the groEL2 duplication is as ancient as cyanobacteria, whereas the groESL1.2 duplication occurred at the ancestor of heterocystous cyanobacteria. A comparison of the groEL paralogs transcription levels under different growth conditions shows that they have adapted distinct transcriptional regulation. Our results reveal that groEL1 and groEL1.2 are upregulated during diazotrophic conditions and the localization of their promoter activity points towards a role in heterocyst differentiation. Furthermore, protein-protein interaction assays suggest that paralogs encoded in the two operons assemble into hybrid complexes. The monocistronic encoded GroEL2 is not forming oligomers nor does it interact with the co-chaperonins. Interaction between GroES1.2 and GroEL1.2 could not be documented, suggesting that the groESL1.2 operon does not encode a functional chaperonin complex. Functional complementation experiments in Escherichia coli show that only GroES1/GroEL1 and GroES1/GroEL1.2 can substitute the native operon. In summary, the evolutionary consequences of chaperonin duplication in cyanobacteria include the retention of groESL1 as a housekeeping gene, subfunctionalization of groESL1.2 and neofunctionalization of the monocistronic groEL2 paralog.


Assuntos
Proteínas de Bactérias/genética , Chaperoninas/genética , Cianobactérias/genética , Evolução Molecular , Duplicação Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...