Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(8): e0237479, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790806

RESUMO

OBJECTIVE: As native cartilage consists of different phenotypical zones, this study aims to fabricate different types of neocartilage constructs from collagen hydrogels and human mesenchymal stromal cells (MSCs) genetically modified to express different chondrogenic factors. DESIGN: Human MSCs derived from bone-marrow of osteoarthritis (OA) hips were genetically modified using adenoviral vectors encoding sex-determining region Y-type high-mobility-group-box (SOX) 9, transforming growth factor beta (TGFB) 1 or bone morphogenetic protein (BMP) 2 cDNA, placed in type I collagen hydrogels and maintained in serum-free chondrogenic media for three weeks. Control constructs contained unmodified MSCs or MSCs expressing GFP. The respective constructs were analyzed histologically, immunohistochemically, biochemically, and by qRT-PCR for chondrogenesis and hypertrophy. RESULTS: Chondrogenesis in MSCs was consistently and strongly induced in collagen I hydrogels by the transgenes SOX9, TGFB1 and BMP2 as evidenced by positive staining for proteoglycans, chondroitin-4-sulfate (CS4) and collagen (COL) type II, increased levels of glycosaminoglycan (GAG) synthesis, and expression of mRNAs associated with chondrogenesis. The control groups were entirely non-chondrogenic. The levels of hypertrophy, as judged by expression of alkaline phosphatase (ALP) and COL X on both the protein and mRNA levels revealed different stages of hypertrophy within the chondrogenic groups (BMP2>TGFB1>SOX9). CONCLUSIONS: Different types of neocartilage with varying levels of hypertrophy could be generated from human MSCs in collagen hydrogels by transfer of genes encoding the chondrogenic factors SOX9, TGFB1 and BMP2. This technology may be harnessed for regeneration of specific zones of native cartilage upon damage.


Assuntos
Proteína Morfogenética Óssea 2/genética , Hidrogéis/química , Fatores de Transcrição SOX9/genética , Fator de Crescimento Transformador beta1/genética , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Cartilagem/citologia , Cartilagem/metabolismo , Cartilagem/patologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese/genética , Colágeno Tipo I/química , Colágeno Tipo X/genética , Meios de Cultura Livres de Soro/química , Glicosaminoglicanos/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
PLoS One ; 15(2): e0229449, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32107493

RESUMO

Anterior cruciate ligament (ACL) transection surgery in the minipig induces post-traumatic osteoarthritis (PTOA) in a pattern similar to that seen in human patients after ACL injury. Prior studies have reported the presence of cartilage matrix-degrading proteases, such as Matrix metalloproteinase-1 (MMP-1) and A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS-4), in the synovial fluid of injured or arthritic joints; however, the tissue origin of these proteases is unknown. The objective of this study was to identify transcriptional processes activated in the synovium after surgical induction of PTOA with ACL transection, and to determine if processes associated with proteolysis were enriched in the synovium after ACL transection. Unilateral ACL transection was performed in adolescent Yucatan minipigs and synovium samples were collected at 1, 5, 9, and 14 days post-injury. Transcriptome-wide gene expression levels were determined using bulk RNA-Sequencing in the surgical animals and control animals with healthy knees. The greatest number of transcripts with significant changes was observed 1 day after injury. These changes were primarily associated with cellular proliferation, consistent with measurements of increased cellularity of the synovium at the two-week time point. At five to 14 days, the expression of transcripts relating to proteolysis and cartilage development was significantly enriched. While protease inhibitor-encoding transcripts (TIMP2, TIMP3) represented the largest fraction of protease-associated transcripts in the uninjured synovium, protease-encoding transcripts (including MMP1, MMP2, ADAMTS4) predominated after surgery. Cartilage development-associated transcripts that are typically not expressed by synovial cells, such as ACAN and COMP, were enriched in the synovium following ACL-transection. The upregulation in both catabolic processes (proteolysis) and anabolic processes (cartilage development) suggests that the synovium plays a complex, balancing role in the early response to PTOA induction.


Assuntos
Cartilagem Articular/patologia , Condrogênese/genética , Osteoartrite/genética , Proteólise , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Transcriptoma , Animais , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Masculino , Osteoartrite/patologia , Osteoartrite/cirurgia , Suínos , Porco Miniatura
3.
Arthritis Rheumatol ; 68(7): 1637-47, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26866935

RESUMO

OBJECTIVE: To test whether intraarticular corticosteroid injection mitigates injury-induced synovitis and collagen degradation after anterior cruciate ligament transection (ACLT) and to characterize the synovial response using a functional genomics approach in a preclinical model of posttraumatic osteoarthritis. METHODS: Yorkshire pigs underwent unilateral ACLT without subsequent corticosteroid injection (the ACLT group; n = 6) or ACLT with immediate injection of 20 mg triamcinolone acetonide (the steroid group; n = 6). A control group of pigs (the intact group; n = 6) did not undergo surgery. Total synovial membrane cellularity and synovial fluid concentration of C1,2C neoepitope-bearing collagen fragments 14 days after injury were primary end points and were compared between the ACLT, steroid, and intact groups. Cells were differentiated by histologic phenotype and counted, while RNA sequencing was used to quantify transcriptome-wide gene expression and monocyte, macrophage, and lymphocyte markers. RESULTS: In the intact group, total cellularity was 13% (95% confidence interval [95% CI] 9-16) and the C1,2C concentration was 0.24 µg/ml (95% CI 0.08-0.39). In the ACLT group, significant increases were observed in total cellularity (to 21% [95% CI 16-27]) and C1,2C concentration (to 0.49 µg/ml [95% CI 0.39-0.59]). Compared to values in the ACLT group, total cellularity in the steroid group was nonsignificantly decreased to 17% (95% CI 15-18) (P = 0.26) and C1,2C concentration in the steroid group was significantly decreased to 0.29 µg/ml (95% CI 0.23-0.35) (P = 0.04). A total of 255 protein-coding transcripts were differentially expressed between the ACLT group and the intact group. These genes mainly enriched pathways related to cellular immune response, proteolysis, and angiogenesis. Mononuclear leukocytes were the dominant cell type in cell-dense areas. MARCO, SOCS3, CCR1, IL4R, and MMP2 expression was significantly associated with C1,2C levels. CONCLUSION: Early intraarticular immunosuppression mitigated injury-induced increases in collagen fragments, an outcome better predicted by specific marker expression than by histologic measures of synovitis.


Assuntos
Glucocorticoides/administração & dosagem , Sinovite/tratamento farmacológico , Triancinolona Acetonida/administração & dosagem , Animais , Ligamento Cruzado Anterior/efeitos dos fármacos , Ligamento Cruzado Anterior/metabolismo , Colágeno/metabolismo , Injeções Intra-Articulares , Suínos , Sinovite/genética , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...