Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 413(24): 5969-5994, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34283280

RESUMO

Microplastics are a widespread contaminant found not only in various natural habitats but also in drinking waters. With spectroscopic methods, the polymer type, number, size, and size distribution as well as the shape of microplastic particles in waters can be determined, which is of great relevance to toxicological studies. Methods used in studies so far show a huge diversity regarding experimental setups and often a lack of certain quality assurance aspects. To overcome these problems, this critical review and consensus paper of 12 European analytical laboratories and institutions, dealing with microplastic particle identification and quantification with spectroscopic methods, gives guidance toward harmonized microplastic particle analysis in clean waters. The aims of this paper are to (i) improve the reliability of microplastic analysis, (ii) facilitate and improve the planning of sample preparation and microplastic detection, and (iii) provide a better understanding regarding the evaluation of already existing studies. With these aims, we hope to make an important step toward harmonization of microplastic particle analysis in clean water samples and, thus, allow the comparability of results obtained in different studies by using similar or harmonized methods. Clean water samples, for the purpose of this paper, are considered to comprise all water samples with low matrix content, in particular drinking, tap, and bottled water, but also other water types such as clean freshwater.


Assuntos
Água Potável/química , Guias como Assunto , Microplásticos/análise , Guias de Prática Clínica como Assunto , Espectrofotometria Infravermelho/métodos , Análise Espectral Raman/métodos , Poluentes Químicos da Água/análise
2.
Front Chem ; 8: 169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257996

RESUMO

In the environment the weathering of plastic debris is one of the main sources of secondary microplastic (MP). It is distinct from primary MP, as it is not intentionally engineered, and presents a highly heterogeneous analyte composed of plastic fragments in the size range of 1 µm-1 mm. To detect secondary MP, methods must be developed with appropriate reference materials. These should share the characteristics of environmental MP which are a broad size range, multitude of shapes (fragments, spheres, films, fibers), suspensibility in water, and modified particle surfaces through aging (additional OH, C=O, and COOH). To produce such a material, we bring forward a rapid sonication-based fragmentation method for polystyrene (PS), polyethylene terephthalate (PET), and polylactic acid (PLA), which yields up to 105/15 mL dispersible, high purity MP particles in aqueous media. To satisfy the claim of a reference material, the key properties-composition and size distribution to ensure the homogeneity of the samples, as well as shape, suspensibility, and aging -were analyzed in replicates (N = 3) to ensure a robust production procedure. The procedure yields fragments in the range of 100 nm-1 mm (<20 µm, 54.5 ± 11.3% of all particles). Fragments in the size range 10 µm-1 mm were quantitatively characterized via Raman microspectroscopy (particles = 500-1,000) and reflectance micro Fourier transform infrared analysis (particles = 10). Smaller particles 100 nm-20 µm were qualitatively characterized by scanning electron microcopy (SEM). The optical microscopy and SEM analysis showed that fragments are the predominant shape for all polymers, but fibers are also present. Furthermore, the suspensibility and sedimentation in pure MilliQ water was investigated using ultraviolet-visible spectroscopy and revealed that the produced fragments sediment according to their density and that the attachment to glass is avoided. Finally, a comparison of the infrared spectra from the fragments produced through sonication and naturally aged MP shows the addition of polar groups to the surface of the particles in the OH, C=O, and COOH region, making these particles suitable reference materials for secondary MP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...