Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 270, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37742038

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSCs) are excessively investigated in the context of inflammation-driven diseases, but the clinical results are often moderate. MSCs are naturally activated by inflammatory signals, which lead to the secretion of immune inhibitory factors in inflamed tissues. Many work groups try to improve the therapeutic outcome of MSCs by genetic modification and the constitutive overexpression of immune modulatory transgenes. However, the ectopic secretion of immune inhibitory transgenes increases the chances of infections, and constitutive transgene expression is not necessary for chronic diseases undergoing different inflammatory stages. METHODS: We designed and tested inflammation-induced promoters to control transgene expression from integrating lentiviral vectors in human umbilical cord MSCs. Therefore, we investigated different combinations of general transcription factor elements to achieve a minimal promoter with low basal activity. The best candidates were combined with interferon-induced GAS or ISRE DNA motifs. The constructs with the highest transgene expression upon addition of pro-inflammatory cytokines were compared to vectorized promoters from inflammation-induced genes (CD317, CXCL9, CXCL10, CXCL11 and IDO1). Finally, we investigated IL10 as a potential immune inhibitory transgene by transcriptome analyses, ELISA and in an acute lung injury mouse model. RESULTS: The synthetic promoters achieved a high and specific transgene expression upon IFN-γ addition. However, the CXCL11 promoter showed synergistic activity upon IFN-γ, TNF-α and IL1-ß treatment and surpassed the transgene expression height of all tested promoters in the study. We observed in transcriptome analyses that IL10 has no effect on MSCs and in ELISA that IL10 is only secreted by our genetically modified and activated CXCL11-IL10-MSCs. Finally, transplanted CXCL11-IL10-MSCs increased CD19+ and CD4+ lymphoid cells, and decreased CD11b+ Ly6g myeloid cells in an ALI mouse model. CONCLUSION: These results provide new insights into MSC inflammatory activation and the subsequent translation into a tool for a tailored expression of transgenes in inflammatory microenvironments. The newly developed promoter elements are potentially interesting for other inflamed tissues, and can be combined with other elements or used in other cell types.


Assuntos
Interleucina-10 , Células-Tronco Mesenquimais , Humanos , Animais , Camundongos , Interleucina-10/genética , Transgenes , Fatores Imunológicos , Ensaio de Imunoadsorção Enzimática
2.
Cells ; 12(15)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37566057

RESUMO

Murine hematopoietic stem and progenitor cells (HSPCs) are commonly used as model systems during gene therapeutic retroviral vector development and preclinical biosafety assessment. Here, we developed cell culture conditions to maintain stemness and prevent differentiation during HSPC culture. We used the small compounds A83-01, pomalidomide, and UM171 (APU). Highly purified LSK SLAM cells expanded in medium containing SCF, IL-3, FLT3-L, and IL-11 but rapidly differentiated to myeloid progenitors and mast cells. The supplementation of APU attenuated the differentiation and preserved the stemness of HSPCs. The TGFß inhibitor A83-01 was identified as the major effector. It significantly inhibited the mast-cell-associated expression of FcεR1α and the transcription of genes regulating the formation of granules and promoted a 3800-fold expansion of LSK cells. As a functional readout, we used expanded HSPCs in state-of-the-art genotoxicity assays. Like fresh cells, APU-expanded HSPCs transduced with a mutagenic retroviral vector developed a myeloid differentiation block with clonal restriction and dysregulated oncogenic transcriptomic signatures due to vector integration near the high-risk locus Mecom. Thus, expanded HSPCs might serve as a novel cell source for retroviral vector testing and genotoxicity studies.


Assuntos
Células-Tronco Hematopoéticas , Fator de Crescimento Transformador beta , Animais , Camundongos , Fator de Crescimento Transformador beta/metabolismo , Proliferação de Células , Células-Tronco Hematopoéticas/metabolismo , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...