Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 530(7588): 63-5, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842054

RESUMO

Cometary nuclei consist mostly of dust and water ice. Previous observations have found nuclei to be low-density and highly porous bodies, but have only moderately constrained the range of allowed densities because of the measurement uncertainties. Here we report the precise mass, bulk density, porosity and internal structure of the nucleus of comet 67P/Churyumov-Gerasimenko on the basis of its gravity field. The mass and gravity field are derived from measured spacecraft velocity perturbations at fly-by distances between 10 and 100 kilometres. The gravitational point mass is GM = 666.2 ± 0.2 cubic metres per second squared, giving a mass M = (9,982 ± 3) × 10(9) kilograms. Together with the current estimate of the volume of the nucleus, the average bulk density of the nucleus is 533 ± 6 kilograms per cubic metre. The nucleus appears to be a low-density, highly porous (72-74 per cent) dusty body, similar to that of comet 9P/Tempel 1. The most likely composition mix has approximately four times more dust than ice by mass and two times more dust than ice by volume. We conclude that the interior of the nucleus is homogeneous and constant in density on a global scale without large voids. The high porosity seems to be an inherent property of the nucleus material.

2.
Nature ; 409(6820): 589-91, 2001 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11214311

RESUMO

The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.

3.
Science ; 253(5027): 1541-8, 1991 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17784099

RESUMO

During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

4.
Science ; 224(4652): 987-9, 1984 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17731997

RESUMO

The Infrared Astronomical Satellite (IRAS) science team has discovered a shell of particulate material around the star Vega. At the mean distance and temperature of the shell, the expected condensation products from a protostellar nebula would be dominated by frozen volatiles, in particular water ice. It is not possible to discriminate between dirty ice and silicate materials in the Vega shell on the basis of the IRAS data. The Vega shell is probably a ring of cometary bodies with an estimated minimum mass of 15 earth masses, analogous to one that has been hypothesized for the solar system. A possible hot inner shell around Vega may be an asteroid-like belt of material a few astronomical units from the star.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...