Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 379(2-3): 109-20, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17434206

RESUMO

Arsenic (As) distribution and toxicology in the environment is a serious issue, with millions of individuals worldwide being affected by As toxicosis. Sources of As contamination are both natural and anthropogenic and the scale of contamination ranges from local to regional. There are many areas of research that are being actively pursued to address the As contamination problem. These include new methods of screening for As in the field, determining the epidemiology of As in humans, and identifying the risk of As uptake in agriculture. Remediation of As-affected water supplies is important and research includes assessing natural remediation potential as well as phytoremediation. Another area of active research is on the microbially mediated biogeochemical interactions of As in the environment. In 2005, a conference was convened to bring together scientists involved in many of the different areas of As research. In this paper, we present a synthesis of the As issues in the light of long-standing research and with regards to the new findings presented at this conference. This contribution provides a backdrop to the issues raised at the conference together with an overview of contemporary and historical issues of As contamination and health impacts.


Assuntos
Arsênio , Poluentes Ambientais , Agricultura , Animais , Arsênio/análise , Arsênio/metabolismo , Arsênio/toxicidade , Biodegradação Ambiental , Microbiologia Ambiental , Monitoramento Ambiental , Poluentes Ambientais/análise , Poluentes Ambientais/metabolismo , Poluentes Ambientais/toxicidade , Humanos , Abastecimento de Água/análise
2.
Sci Total Environ ; 379(2-3): 133-50, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17250876

RESUMO

Recognition of arsenic (As) contamination of shallow fluvio-deltaic aquifers in the Bengal Basin has resulted in increasing exploitation of groundwater from deeper aquifers that generally contain low concentrations of dissolved As. Pumping-induced infiltration of high-As groundwater could eventually cause As concentrations in these aquifers to increase. This study investigates the adsorption capacity for As of sediment from a low-As aquifer near Dhaka, Bangladesh. A shallow, chemically-reducing aquifer at this site extends to a depth of 50 m and has maximum As concentrations in groundwater of 900 microg/L. At depths greater than 50 m, geochemical conditions are more oxidizing and groundwater has <5 microg/L As. There is no thick layer of clay at this site to inhibit vertical transport of groundwater. Arsenite [As(III)] is the dominant oxidation state in contaminated groundwater; however, data from laboratory batch experiments show that As(III) is oxidized to arsenate [As(V)] by manganese (Mn) minerals that are present in the oxidized sediment. Thus, the long-term viability of the deeper aquifers as a source of water supply is likely to depend on As(V) adsorption. The adsorption capacity of these sediments is a function of the oxidation state of As and the concentration of other solutes that compete for adsorption sites. Arsenite that was not oxidized did adsorb, but to a much lesser extent than As(V). Phosphate (P) caused a substantial decrease in As(V) adsorption. Increasing pH and concentrations of silica (Si) had lesser effects on As(V) adsorption. The effect of bicarbonate (HCO(3)) on As(V) adsorption was negligible. Equilibrium constants for adsorption of As(V), As(III), P, Si, HCO(3), and H were determined from the experimental data and a quantitative model developed. Oxidation of As(III) was modeled with a first-order rate constant. This model was used to successfully simulate As(V) adsorption in the presence of multiple competing solutes. Results from these experiments show that oxidized sediments have a substantial but limited capacity for removal of As from groundwater.


Assuntos
Arsênio/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/química , Adsorção , Arsênio/análise , Bangladesh , Bicarbonatos/análise , Bicarbonatos/química , Carbono/análise , Sedimentos Geológicos/análise , Concentração de Íons de Hidrogênio , Oxirredução , Fósforo/análise , Fósforo/química , Silício/análise , Silício/química , Poluentes Químicos da Água/análise , Abastecimento de Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...