Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biologics ; 14: 107-114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116397

RESUMO

Coronavirus disease 2019 (COVID-19), an infectious disease that primarily attacks the human pulmonary system, is caused by a viral strain called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The outbreak emerged from Wuhan, China, and later spread throughout the world. Until the first week of May 2020, over 3.7 million cases had been reported worldwide and more than 258,000 had died due to the disease. So far, off label use of various drugs has been tried in many clinical settings, however, at present, there is no vaccine or antiviral treatment for human and animal coronaviruses. Therefore, repurposing of the available drugs may be promising to control emerging infections of SARS-COV2; however, new interventions are likely to require months to years to develop. Glycopeptides, which are active against gram-positive bacteria, have demonstrated significant activity against viral infections including SARS-COV and MERS-COV and have a high resemblance of sequence homology with SARS-COV2. Recent in vitro studies have also shown promising activities of aglycon derivative of glycopeptides and teicoplanin against SARS-COV2. Hydrophobic aglycon derivatives and teicoplanin, with minimal toxicity to human cell lines, inhibit entry and replication of SARS-COV2. These drugs block proteolysis of polyprotein a/b with replicase and transcription domains. Teicoplanin use was associated with complete viral clearance in a cohort of patients with severe COVID-19 symptoms. This review attempts to describe the activity, elucidate the possible mechanisms and potential clinical applications of existing glycopeptides against corona viruses, specifically SARS-COV2.

2.
Biologics ; 14: 37-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368008

RESUMO

Galanin (GAL) is a 29-amino-acid neuropeptide that serves multiple physiological functions throughout the central and peripheral nervous system. Its role involves in a range of physiological and pathological functions including control of food intake, neuro-protection, neuronal regeneration, energy expenditure, reproduction, water balance, mood, nociception and various neuroendocrine functions. The use of currently available antidepressant drugs raises concerns regarding efficacy and onset of action; therefore, the need for antidepressants with novel mechanisms is increasing. Presently, various studies revealed the link between GAL and depression. Attenuation of depressive symptoms is achieved through inhibition of GalR1 and GalR3 and activation of GalR2. However, lack of receptor selectivity of ligands has limited the complete elucidation of effects of different receptors in depression-like behavior. Studies have suggested that GAL enhances the action of selective serotonin reuptake inhibitors (SSRIs) and promotes availability of transcription proteins. This review addresses the role of GAL, GAL receptors (GALRs) ligands including selective peptides, and the mechanism of ligand receptor interaction in attenuating depressive symptoms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...