Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(11): 5847-5863, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37140059

RESUMO

Streptococcus pyogenes Cas9 (SpCas9) nuclease exhibits considerable position-dependent sequence preferences. The reason behind these preferences is not well understood and is difficult to rationalise, since the protein establishes interactions with the target-spacer duplex in a sequence-independent manner. We revealed here that intramolecular interactions within the single guide RNA (sgRNA), between the spacer and the scaffold, cause most of these preferences. By using in cellulo and in vitro SpCas9 activity assays with systematically designed spacer and scaffold sequences and by analysing activity data from a large SpCas9 sequence library, we show that some long (>8 nucleotides) spacer motifs, that are complementary to the RAR unit of the scaffold, interfere with sgRNA loading, and that some motifs of more than 4 nucleotides, that are complementary to the SL1 unit, inhibit DNA binding and cleavage. Furthermore, we show that intramolecular interactions are present in the majority of the inactive sgRNA sequences of the library, suggesting that they are the most important intrinsic determinants of the activity of the SpCas9 ribonucleoprotein complex. We also found that in pegRNAs, sequences at the 3' extension of the sgRNA that are complementary to the SL2 unit are also inhibitory to prime editing, but not to the nuclease activity of SpCas9.


Assuntos
Proteína 9 Associada à CRISPR , Streptococcus pyogenes , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Nucleotídeos , Sistemas CRISPR-Cas , Edição de Genes
2.
Nucleic Acids Res ; 49(6): e31, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33450024

RESUMO

Detailed target-selectivity information and experiment-based efficacy prediction tools are primarily available for Streptococcus pyogenes Cas9 (SpCas9). One obstacle to develop such tools is the rarity of accurate data. Here, we report a method termed 'Self-targeting sgRNA Library Screen' (SLS) for assaying the activity of Cas9 nucleases in bacteria using random target/sgRNA libraries of self-targeting sgRNAs. Exploiting more than a million different sequences, we demonstrate the use of the method with the SpCas9-HF1 variant to analyse its activity and reveal motifs that influence its target-selectivity. We have also developed an algorithm for predicting the activity of SpCas9-HF1 with an accuracy matching those of existing tools. SLS is a facile alternative to the much more expensive and laborious approaches used currently and has the capability of delivering sufficient amount of data for most of the orthologs and variants of SpCas9.


Assuntos
Proteína 9 Associada à CRISPR , RNA/química , Algoritmos , Animais , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Linhagem Celular Tumoral , Clivagem do DNA , Variação Genética , Camundongos , Streptococcus pyogenes/enzimologia
3.
Nat Commun ; 11(1): 1223, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144253

RESUMO

Increased fidelity mutants of the SpCas9 nuclease constitute the most promising approach to mitigating its off-target effects. However, these variants are effective only in a restricted target space, and many of them are reported to work less efficiently when applied in clinically relevant, pre-assembled, ribonucleoprotein forms. The low tolerance to 5'-extended, 21G-sgRNAs contributes, to a great extent, to their decreased performance. Here, we report the generation of Blackjack SpCas9 variant that shows increased fidelity yet remain effective with 21G-sgRNAs. Introducing Blackjack mutations into previously reported increased fidelity variants make them effective with 21G-sgRNAs and increases their fidelity. Two "Blackjack" nucleases, eSpCas9-plus and SpCas9-HF1-plus are superior variants of eSpCas9 and SpCas9-HF1, respectively, possessing matching on-target activity and fidelity but retaining activity with 21G-sgRNAs. They facilitate the use of existing pooled sgRNA libraries with higher specificity and show similar activities whether delivered as plasmids or as pre-assembled ribonucleoproteins.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Proteína 9 Associada à CRISPR/química , Cristalografia por Raios X , Células HEK293 , Humanos , Mutagênese , Mutação , Estrutura Secundária de Proteína/genética , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 48(7): 3722-3733, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32107556

RESUMO

The widespread use of Cas12a (formerly Cpf1) nucleases for genome engineering is limited by their requirement for a rather long TTTV protospacer adjacent motif (PAM) sequence. Here we have aimed to loosen these PAM constraints and have generated new PAM mutant variants of the four Cas12a orthologs that are active in mammalian and plant cells, by combining the mutations of their corresponding RR and RVR variants with altered PAM specificities. LbCas12a-RVRR showing the highest activity was selected for an in-depth characterization of its PAM preferences in mammalian cells, using a plasmid-based assay. The consensus PAM sequence of LbCas12a-RVRR resembles a TNTN motif, but also includes TACV, TTCV CTCV and CCCV. The D156R mutation in improved LbCas12a (impLbCas12a) was found to further increase the activity of that variant in a PAM-dependent manner. Due to the overlapping but still different PAM preferences of impLbCas12a and the recently reported enAsCas12a variant, they complement each other to provide increased efficiency for genome editing and transcriptome modulating applications.


Assuntos
Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Edição de Genes , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Mutação , Especificidade por Substrato
5.
PLoS One ; 9(3): e90896, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24618593

RESUMO

The procedure described here allows the cloning of PCR fragments containing a recognition site of the restriction endonuclease (Type IIP) used for cloning in the sequence of the insert. A Type IIS endonuclease--a Body Double of the Type IIP enzyme--is used to generate the same protruding palindrome. Thus, the insert can be cloned to the Type IIP site of the vector without digesting the PCR product with the same Type IIP enzyme. We achieve this by incorporating the recognition site of a Type IIS restriction enzyme that cleaves the DNA outside of its recognition site in the PCR primer in such a way that the cutting positions straddle the desired overhang sequence. Digestion of the PCR product by the Body Double generates the required overhang. Hitherto the use of Type IIS restriction enzymes in cloning reactions has only been used for special applications, the approach presented here makes Type IIS enzymes as useful as Type IIP enzymes for general cloning purposes. To assist in finding Body Double enzymes, we summarised the available Type IIS enzymes which are potentially useful for Body Double cloning and created an online program (http://group.szbk.u-szeged.hu/welkergr/body_double/index.html) for the selection of suitable Body Double enzymes and the design of the appropriate primers.


Assuntos
Clonagem Molecular/métodos , Desoxirribonucleases de Sítio Específico do Tipo II , Reação em Cadeia da Polimerase , Sítios de Ligação , Biologia Computacional/métodos , Internet , Motivos de Nucleotídeos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA